
Predictable resource sharing and resource availability with Trusted Execution Environments 1

PROJECT OUTLINE

This PhD project will use Trusted Execution Environments (TEEs) to implement a notion of availability
and real-time guarantees in embedded and high-end systems. Our research hypothesis is that TEEs
can enable the development of real-time systems with a small Trusted Computing Base (TCB). Current
real-time systems are based on specialized design patterns and programming languages and often
require expert knowledge. However if the core components of a real-time system would be provided
by a small TCB inside of a TEE, this would massively reduce development costs due to a reduced
complexity of the system and lower deployment costs due to the possibility of using commercial
off-the-shelf (COTS) hardware. Instead of requiring specialized hardware or programming paradigms, it
would be possible for non-experts to deploy low-cost mixed-criticality systems that provide availability
guarantees and can be used in scenarios that need real-time compliance.

We first establish a common ground by giving background on the state of the art of hardware
isolation and TEEs. Next, we explain the objectives of this PhD project and discuss the methodology
and the associated work plan to achieve the mentioned objectives.
1 Rationale and positioning with regard to the state-of-the-art
TEEs provide an environment in which small pieces of code, called enclaves, are isolated from the
Rich Execution Environment (REE) which consists of the Operating System (OS) and its executed
software [10]. If an attacker compromises the REE, e.g. through vulnerabilities in the OS that is running
within the REE, this isolation protects the confidentiality and integrity of enclaves that are executed
by the TEE. While the attacker might be able to influence and tamper with all data that is held within
the REE, she has no access to data that is held by enclaves within the TEE. Furthermore, TEEs allow
external parties to authenticate the system’s hardware and software configuration through a process
called remote attestation. Remote attestation is based on cryptographic primitives that are used to
establish a secure channel directly into the enclave within the isolation of the TEE and allows remote
parties to attest the integrity of the enclave that they communicate with. This enables users of a
TEE to perform integrity and confidentiality protected computations that can be communicated to
external parties and verified as provably originating from the correct enclave [10]. Lastly, TEEs protect
the integrity of code that is loaded into the isolated environment and give enclaves access to a trusted
storage where they can store persistent data.

TEEs provide strong security properties, i.e. attestation, isolation, code integrity, and trusted
storage which can be beneficial in a wide range of applications such as cloud computing, real-time
systems, autonomous transportation, cyber physical systems, 5G services, or robotics. However, any
real-time dependent application and also many other usages require varying degrees of guaranteed
availability on their used resources. With most existing TEEs, availability has so far been considered
as out-of-scope. Most of these TEEs put the TEE under the control of the REE to initiate, load, and
schedule the execution of enclaves inside the TEE. While this ensures full compatibility with existing
operating system designs and allows for simple error handling, it also places the REE in full control of
the availability of the TEE. A malicious OS inside the REE could as such delay, disrupt, or completely
deny the service of an enclave inside the TEE. This is unacceptable for real-time applications and
prevents the use of TEEs in any area that has real-time constraints.

There exist several real world implementations of TEEs, some of which are deployed in commercial
off-the-shelf (COTS) hardware. The two most deployed TEEs systems are Intel SGX and ARM TrustZone
which are either available on end-user processors in desktop PCs (Intel SGX [12]) or on mobile devices
(ARM TrustZone [2]). There also exist a wide range of research based TEEs such as Sancus [18], and
the Risc-V-based Sanctum [7] and its successor Keystone 1. Other academic research projects include
TyTan [3] and TrustLite [14]. All of the above TEEs view the challenge of availability as out of scope

1https://keystone-enclave.org/

Fritz Alder Research Foundation - Flanders (FWO) accepted grant No. 11E5120N



Predictable resource sharing and resource availability with Trusted Execution Environments 2

of their attacker model. As such, any attacker that compromised the REE can completely deny any
service of the TEE which is not desirable in any real-time sensitive application.
2 Scientific research objectives
The current state-of-the-art systems lack support for availability guarantees of executed enclaves
within a TEE. Our research hypothesis is that TEEs can enable the development of real-time systems
with a small TCB. This PhD project aims to develop tools and formalize requirements for a TEE to
support this kind of real-time compliance in hardware without requiring a large TCB. As a long-term
objective, this means that a TEE could be used as a hardware-based scheduler in real-time and
mixed-criticality systems that enforces availability of possibly mission critical elements. One intuitive
example where this can be a crucial benefit is autonomous driving where safety mechanisms need
to react to sensor input in an instant. If the safety mechanism has hardware-guaranteed access to
the necessary sensors periodically, no other system can delay a possibly life-saving reaction of the
safety mechanism by blocking this access. Similar intuitive examples exist for any real-time system
where multiple processes need to access resources either periodically or non-periodically but where
a blocking of a resource is undesired. There are three main advantages if a TEE-based solution can
be used for real-time systems. First, a TEE-based solution with a small TCB would rapidly decrease
the engineering effort required for a real-time system as the system could be abstracted away for
the developer and had a lower complexity in general due to its low overhead. Second, a TEE-based
solution built on common COTS hardware would allow systems to be deployed with minimal costs
compared to custom-built or industry-specific hardware. The third main advantage is that a TEE-based
solution can still maintain these guarantees in the presence of adversaries on the same system where
even if an adversary has control over the REE of the device, she can not break its real-time guarantees.
Another benefit would be that enclaves could gain exclusive access to resources which could be used
for secure I/O into enclaves. Currently, no existing TEE natively supports I/O operations due to a range
of issues with the trusted path between input device and enclave.

In the following, we denote an entity such as an enclave instance with the symbol E , the trusted
scheduler with S, any specific resource E tries to access asR, and the time that it needs access to
this resource as tdur. If E requires a periodic access toR, e.g. at most every 30 seconds, this limit is
denoted as tlim. We identify the following core objectives:

Resource generality. While it is simple to view the resourceR as solely the cpu time, it is highly
beneficial to design access to and scheduling of a resource in a general fashion. Our first research
question is how to maintain a universal definition of a resource so that it can be scheduled and
accessed type-agnostic. With a generic resource, the scheduler can not only give access to cpu time
but also to memory, disk space, possible sensors, I/O operations and any resource that might be
available to the underlying device. Not only would a universal handling of a system resource be
beneficial due to the low complexity of extending the system, it would also decrease developer effort
by well-defined APIs to access any resource.

Guaranteed resource scheduling. The second research question is related to the scheduling of
resources and investigates how TEEs can be utilized as resource schedulers for shared or exclusive
access to resources. Such a scheduler S should allow any E to request that S gives it access toR for
tdur seconds in increments of exactly or at most tlim seconds. This allows for time based real-time
systems to periodically execute services but also enables non real-time applications to maintain crucial
tasks that can not be shut down by an attacker that has control of the REE. One simple example is an
auditing mechanism that periodically checks the proper use of all resources and sends an alert if it
detects malicious or erroneous behavior. Without a guaranteed resource scheduling, a malicious REE
could either deny the auditing mechanism’s access to the I/O resource that it needs to report its alerts
or even deny the whole scheduling and as such execution of the whole auditing mechanism. With a
guaranteed resource scheduling however, the auditing mechanism, in this case E , could periodically

Fritz Alder Research Foundation - Flanders (FWO) accepted grant No. 11E5120N



Predictable resource sharing and resource availability with Trusted Execution Environments 3

gain access to its necessary resources such as cpu time, memory, network, and maybe sensors that it
is monitoring while this access is enforced on hardware level by the scheduler S. Similar approaches
have been made with respect to Protected Module Architectures (PMAs) [25].

Multi-process resource usage. The next research question is how to allow multiple processes to
request access to the same resource which can either mean sharing a resource between multiple
enclaves or even sharing between an enclave and the REE. This is an important step to make the
system usable in real-world and real-time systems that might have multiple stakeholders or simply
multiple services requiring access to the same resources. Sharing a resource holds several challenges
that must be overcome in order to guarantee availability in this scenario. One challenge is that a
malicious REE or enclave might gain access toR but never release it. This would prevent the correct
and periodic scheduling of the next stakeholder and break the availability guarantee. To overcome
this issue, S must be able to retract access to R once tdur has been exceeded, even if E is not
cooperating. Another challenge is that a malicious entity E2 might try to accessR while it is currently
scheduled for E1. Depending on the type ofR, shared access toR has different issues ranging from
breaking the availability guarantees to a breach of confidentiality if the resource is an I/O channel.
As a result, to enable multi-process resource usage, the trusted scheduler S must be able to grant
and revoke shared and exclusive access of entities toR. This task is influenced by static rules based
on the periodic accesses of at most tlim seconds for tdur seconds and additionally dynamic queries
that only request access to a resource once but can not be accounted for ahead of time. A trusted
scheduler will need to account for both in order to make the system secure in multi-stakeholder
settings. t-kernel [11] approached this topic by periodically transferring control back to their trusted
OS every few instructions. The TyTan security architecture [3] allows the REE to schedule dynamically
loaded enclaves between normal tasks but they rely on an omnipotent software layer in the REE for
loading and scheduling which we try to avoid and place in our TEE.

Real-time Compliance. In addition to a guarantee that E will receive access toR at most every tlim
seconds, we will also investigate the research question of how to provide full support for interruptible
isolated execution and event-driven resource requests. This would allow the TEE to be useful in
real-time systems. Interruptible isolated execution is crucial to enforce that an important service can
take over execution from a currently running process if this is necessary. Especially for mixed-criticality
systems where some processes have a higher priority than others, this is an important objective [4].
This paves the way for event driven resource requests where E can register to event e in order to be
executed within tlim seconds after this event triggers. While most TEE systems allow interrupts in their
system model, none support the guaranteed scheduling based on events. Interrupts are supported in
Intel SGX [12], in Sancus since Sancus 2.0 [18], in TyTan [3], and in TrustLite [14]. To confirm to real-time
compliance, entities in a mixed-criticality system might also require dynamic prioritized access to
resources, for example to perform an action as a result of an event. In the above mentioned example
of a safety mechanism for autonomous driving, this mechanism would dynamically request priority
access to core car components to brake the vehicle and park on the side of the street in the event of a
failure or error. While the autonomous driving services have regular control of these components,
the safety mechanism would need to interrupt running resource accesses, be scheduled a prioritized
slot that overwrites all periodic access requests, and should not be interrupted itself. Masti et al. [17]
propose a mix of hard- and software to prevent misbehaving applications from holding resources
instead of releasing them after their allocated time. The state of the art on real-time compliance
are real-time operating systems (RTOS) or separation kernels which is a widely researched topic
[5, 15, 13, 16].

Remote attestation. The last research question is how to allow the attestation of the device’s
scheduling operations by remote parties. One of the main benefits of a TEE are its remote attestation
capabilities that can be used by external parties to verify the integrity of the attested system. If S can

Fritz Alder Research Foundation - Flanders (FWO) accepted grant No. 11E5120N



Predictable resource sharing and resource availability with Trusted Execution Environments 4

be attested by a third party and show its properties as executing correctly, this can establish trust
into the attested system and allow for simple policy checking of devices. It might also be crucial to
not only integrity check the scheduler S and its current policies but also receive an audit of previous
resource accesses by entities on the attested system. This is an extension on the simple requirement
of a scheduler but could be realized by the scheduler itself as part of its normal operation. There
is a wide range of previous work on remote attestation in embedded devices, both for solely hard-
and software designs and also several combined approaches. SMART [9] is a hard- and software
co-design that establishes a dynamic root of trust on low-end micro-controller units. Trusted Platform
Modules [23] are secure co-processors and as such pure hardware solutions and provide remote
attestation based on platform configuration registers that define the current state of the system.
Multiple projects realized software-only remote attestation such as SWATT [20], SAKE [19], or work by
Shaneck et al. [21]. We will be able to build on this earlier work to also provide remote attestation in
our system.
3 Methodology
To approach our research questions wewill follow hypothesis driven research, initiated by investigating
changes to the existing Sancus platform which is actively being developed at our research group.
Starting with Sancus is a low-risk option due to the high level of expertise at our research group
and its open-source nature that is open to adjustments and changes to achieve our goals. We will
use the Sancus platform to establish a minimal set of (possibly hardware) requirements to achieve
these objectives. This minimum can then be used as a baseline for formalizations of TEE schedulers,
explorations of our objectives on other platforms, and implementation of applications.

By working from an existing open-source platform towards formal requirements and COTS plat-
forms that might not be open-source, we guarantee an incremental approach to a holistic view of
TEE enforced availability. In addition to moving from Sancus to other platforms, we will also move
from investigating and formalizing a subset of the functionality to a complete solution of all above
discussed objectives. This can be supplemented by periodically designing and implementing real-world
challenges to verify and check our assumptions and objectives. In the following, we describe the three
work packages as depicted in Figure 1 with three tasks for each package. We discuss the individual risk
of failure for each of these options and describe their placement in the research project. Due to the
high level of flexibility of combining several work packages with each other, we mitigate the failure of
one or several tasks and ensure the success of the overall project.

Each work package will follow an iterative approach to investigate the research questions stated
earlier. It is sensible to start with a subset of the final objectives and build from these core capabilities.
In this way, we will evaluate the research questions one by one and answering each individual question
will yield novel publishable results. We will approach the objectives in three steps of incrementing
complexity: Solely investigating a scheduler that enables guaranteed resource scheduling to a single
entity, extending this scheduler by allowing multiple stakeholders and processes to access resources
at the same time, and finally approaching real-time compliance by supporting interrupts, events, and
prioritization during scheduling.

Guaranteed (shared or exclusive) resource scheduling: The first subset of research questions
ask how to allow an entity E to request shared or exclusive access to resourceR. In this first iteration,
the isolation of this access is the most critical aspect together with the fact that the requestingR from
the scheduler S will guarantee that this access will happen at a specific time. Without accounting
for multiple processes or other trusted parties on the same system that might also need access to
the same resource, investigating this first research question subset is a viable approach to the overall
challenge and can clearly be considered as the first step.

Multi-stakeholder resource usage: As an extension of the first research question, we will then
expand the scope of the system to account for multiple stakeholders that might require access to

Fritz Alder Research Foundation - Flanders (FWO) accepted grant No. 11E5120N



Predictable resource sharing and resource availability with Trusted Execution Environments 5

the same resource. This not only includes other enclaves within the TEE but also the REE itself. An
important aspect here is that while several entities might have access to R scheduled, access to
R should always be isolated to the one specific E1 that currently has access to it while no other E2
should be able to read out the current interaction with this resource. This objective adds interesting
multi-tenant scenarios to the list of possible deployment scenarios and requires strong isolation
but also a possibility for S to revoke the resource again if it is not surrendered voluntarily after the
expiration of tdur.

Multi-stakeholder real-time resources: The last step in approaching our research questions
adds the last objective of real-time compliance and remote attestation to our scope. With this last
step, S will be able to accept event-based registrations to resources and be able to remotely attest not
only the policies but also the accesses each entity has to the given resources. Due to the complexity and
interconnection of registering events, interrupts for real-time compliance, and multiple stakeholders,
this will be the last step in the development process of availability guaranteed resource scheduling.

TEEs

Sancus

Open 
processors

COTS 
hardware

Requirements

Hardware 
additions

In System

Formalization

Applications

5G micro 
services

Autonomous 
driving

Figure 1: Overview of all three work packages and their tasks.

This order of incrementally widening the scope of our research questions will be applied to all of
the following work packages.
3.1 Work package 1: Availability for specific TEEs
The first work package bundles the investigation of the different TEEs that can be used to answer our
research questions. We identify three suitable environment groups, each with different levels of risk:
Sancus, open processors like the Risc-V based Keystone enclave, and COTS hardware such as Intel SGX
and ARM TrustZone.

Sancus (low-risk). Sancus [18] is a security architecture that aims to provide attestable isolated
execution without requiring trust in software for low-cost, resource-constrained embedded devices.
Our first approach will be to work on the mentioned objectives on the Sancus architecture as it is
fully open-source and actively being developed at our research group. We view working with the
Sancus architecture as low-risk as I will be able to benefit from the collaboration with the experts
at the research group. Another benefit of Sancus is that it is built on minimal assumptions on the
trusted computing base and in fact does not require trust in any software on the deployed system to
operate. This means that we can investigate our research questions and their feasibility in a low-risk
environment before moving on to more challenging environments.

Open processors - Keystone enclave (medium-risk). The second possible environment that we
identify is the area of open-hardware processors, namely the RISC-V processor, and the Keystone

Fritz Alder Research Foundation - Flanders (FWO) accepted grant No. 11E5120N



Predictable resource sharing and resource availability with Trusted Execution Environments 6

project. Keystone is a research project that aims to develop an open-source and open-hardware based
TEE by establishing a TCB in one of the privileged management modes that is available in the RISC-V
architecture. So far, Keystone supports physical memory protection, memory isolation, interrupts,
and exceptions 2. The benefit of evaluating and implementing our objectives in an open-hardware
environment is that there are no proprietary, possibly closed-source components that belong to the
TCB that might hinder the realization of our scheduler. At the same time, the RISC-V architecture
is an internationally respected and actively researched project and as such extending the Keystone
enclaves with availability guarantees would be timely and a publishable improvement of the current
state of the art.

COTS hardware - Intel SGX, ARM TrustZone (medium to high-risk). The third possible environment
for this PhD project will be working directly with COTS hardware such as Intel SGX or ARM TrustZone.
It is also possible to not work directly with TEEs already embedded into COTS hardware but utilize
virtualization extensions such as Fides [22] to answer the research questions. While extending COTS
hardware would have the largest impact and value for real-life applicability of our work, it also has
the greatest risk attached to it due to their usually proprietary nature. Most often, developers on
these platforms do not have full access to the whole TCB but can instead only use predefined APIs
and libraries whose source code might never be revealed by the manufacturer. Additionally, there can
be elements on these systems that are locked down for developers, such as the System Management
Mode on Intel’s SGX hardware. We rate approaching COTS hardware as medium risk and will need
to mitigate possible dead ends in the implementation and evaluation of our objectives on these
platforms by researching multiple trajectories.
3.2 Work package 2: Requirements and formal guarantees for availability
The second work package deals with the requirements and the formal guarantees that are necessary
for TEE-based availability. This includes investigating hardware additions to the existing environment,
only utilizing the system’s capabilities to achieve our goals, and finally formalizing the requirements.
We now give an overview of each of these tasks.

Hardware additions (low-risk). When investigating changes to an existing system to realize novel
functionality, the least error-prone option is to propose hardware additions to the system in order
to achieve specific goals. In this sense, we will first evaluate the minimal set of hardware additions
to the Sancus and possibly other environments that are required to achieve the objectives stated in
the previous section. While hardware additions have the downside of being impractical, they can
give interesting insights into the minimum requirements that are necessary to answer all research
questions. As such, the hardware additions will be the first learning step for us and allows us to build
on this knowledge with successive work tasks.

In system (medium-risk). The second task of this work packages investigates our research questions
within the constraints of a given system without changing or proposing any hardware. By extending
existing systems in software, we can provide highly valuable work as it is reproducible and directly
applicable by other researchers. At the same time, this approach also holds a larger risk than simply
suggesting hardware additions as we will be restricted by the existing capabilities of the underlying
system. Especially if the environment contains source code that is not open-source, such as the
proprietary COTS environments, this approach holds a medium-level risk as it simply might not be
possible to realize our given objectives within this environment. We mitigate this risk by diversifying
the TEEs that we investigate which allows us to still evaluate the given challenges broadly, even
without assessing one specific environment.

Formalization (high-risk). The last task of this work package is the formalization of the given require-
ments. Formalization will give a fundamental approach to our objectives and will give a definition of

2https://keystone-enclave.org/

Fritz Alder Research Foundation - Flanders (FWO) accepted grant No. 11E5120N



Predictable resource sharing and resource availability with Trusted Execution Environments 7

the smallest subset of features required, independently of the environment that these features are
implemented on. This work package will require formal models to properly define the system and its
requirements and will utilize existing standards and best-practices [8, 6]. We identify a high-risk for
this methodology as I personally do not have any experience with formalizing a whole system or like
in this case with formalizing requirements for system components yet.
3.3 Work package 3: Applications
The last work package that we will explore is to design and implement applications that make use
of a trusted scheduler with a specific TEE environment. Such an application can either complement
another work package or simply give context to an otherwise academic approach to the underlying
challenges. We identify two possible applications that can be explored and will yield novel insights
with potential economic impact for their respective application domain: Migrating 5G micro services
and safety mechanisms in autonomous driving.

A1: Migrating 5G micro services. This application will evaluate the research question whether it
is possible to give real-time guarantees for migrating enclaves, which is required by micro services
that run in the 5G infrastructure. 5G network cells will be smaller compared to cell towers of older
generations and it is to be expected that end devices will move regularly between towers. Micro
services that are attached to client data needs to be passed over to the next cell tower within strict
time-limits to prevent interruptions of service. Especially with the high data rates and low latency of
5G, any interruption needs to be kept as short as possible and it would be beneficial if it is possible
to give an exact time guarantee on the duration of this handoff. TEEs offer a security and privacy
advantage in the realm of 5G and allow providers to comply to privacy regulations and isolate client
services from each other. This application is closely connected to my earlier publication on migrating
SGX enclaves [1] and I have experience with the challenges and requirements of this task. While
migrating enclaves is discussed by this earlier work, it did not explore any real-time challenges on
the migration process and especially can not give any guarantee for the completion of the migration.
As such, we think that extending this previous work and applying it on the timely topic of 5G micro
services will yield publishable results that are relevant to the overall field. At the same time, my
experience with this topic lowers the risk involved with this application significantly.

A2: Safety mechanisms in autonomous driving. The second application will tackle the research
challenge of how to enable multiple TEE-based services in an autonomous car to cooperate while
allowing for safety mechanisms to take over in an instant whenever abnormal behavior is detected.
This application is a natural extension on the objectives that we will develop throughout our research
questions and the discussed objectives and adds some complexities due to the context of an au-
tonomous car. While the application requires all real-time compliance objectives like interrupts, event-
and time-based resource scheduling, and multi-stakeholder compatibility, there are also additional
requirements such as redundancy, error-mitigation techniques, and resource constraints that make
this application a relevant contribution to the state of the art. Development of this application can be
performed similarly to the demo scenario of VulCAN [24] that was developed at our research group.
Such a demo is not only an effective way of explaining the project to a non-expert audience, it also
demonstrates the feasibility of the developed tools in a real-world scenario.
4 Work plan
Based on the earlier mentioned methodology and research vectors, we now present our work plan for
the 4-year grant period. Some of the work package subtasks have a high risk of either being impossible
or posing a dead end and we alleviate this impact by following multiple research trajectories. We first
present our work plan and then discuss possible adjustments to this plan if they become necessary
through failures of one or several tasks. Within our work plan, answering each individual question
will yield novel and publishable results with potential economic impact.

Fritz Alder Research Foundation - Flanders (FWO) accepted grant No. 11E5120N



Predictable resource sharing and resource availability with Trusted Execution Environments 8

Figure 2: Our work plan with Sancus related tasks depicted in blue, open-hardware related tasks
depicted in gold, COTS related tasks in green, and the formalization in orange. Arrows depict a
knowledge transfer between work packages while lines depict a natural extension of a task.

4.1 Ideal work plan
Figure 2 depicts our work plan for the 4-year grant period. The blue work packages symbolize the
Sancus related tasks, gold the open hardware environments, green COTS hardware, and orange the
formalization that is system-agnostic. As previously mentioned, we will start by investigating hardware
additions to the existing Sancus security architecture (Sancus—HW additions). Since this is a low-risk
work package due to its nature of proposing new features, we will quickly be able to expand this
and achieve a complete overview of our research questions early in the project. We expect the first
publishable results from this work as it will give insights into the domain of guaranteed TEE-based
availability. Once this is complete, we will have gained first experience with the requirements needed
for our objectives, and maybe also gained first experience about the limits of different approaches.
These insights will allow us to start the formalization work task that we expect to be developed and
refined over the course of Year 2.

At the end of the Sancus related work packages, we will have gained insight into our reserach
questions and will be able to use this experience for two following work tasks: Evaluating hardware
changes on open-hardware processors (Open HW— HW additions) and developing the autonomous
driving application on the Sancus architecture with the proposed hardware changes (Sancus — Car).

Our research group already has an existing prototype regarding attestation in autonomous cars for
a previous scientific publication [24] which could be used as a base for the autonomous car application.
This first application also allows us to showcase the underlying work to non-expert audiences and
explain its importance for the development of future mixed-criticality systems across domains. Open
HW— HW additions aims to investigate hardware additions to existing open-hardware processors
and we will learn from the previous completion of the same work on the Sancus environment. Inde-
pendently but in parallel, we will start to work on the work package COTS — SW changes to evaluate
how COTS hardware can be used without hardware additions to answer our research questions. I
personally, and our research group in general have a high level of expertise with certain COTS systems
and will be able to apply this knowledge for this project. In the third year, we expect to have gained
enough experience and progress to explore the 5G application with COTS hardware (COTS — 5G). At
the same time, we expect to make progress with open-hardware environments and the development
on these platforms to apply our knowledge of software additions from the COTS environment to
open-processors (Open HW— SW changes). The latter half of the fourth year is then reserved for
thesis writing.

Fritz Alder Research Foundation - Flanders (FWO) accepted grant No. 11E5120N



Predictable resource sharing and resource availability with Trusted Execution Environments 9

4.2 Flexible work plan in case of failures
With our diverse set of possible research directions, we are able to mitigate failures and provide
publishable results even in the case of one research trajectory not yielding promising results. We are
able to mitigate failures in one work package by taking a different path than depicted in the ideal work
plan. One example is a failure of the formalization of our requirements. Since we identified this work
package as high-risk, we will alleviate impact of a failure in this direction by instead focusing more on
software additions to open-hardware platforms such as Keystone. This is a work package that is only
considered for the end of the third year in the ideal work plan but which can also be moved to earlier
in the process.

If it is not possible to provide availability guarantees in COTS hardware through software changes
(Failure of COTS — SW changes), we will alleviate this impact by two actions: Realizing application
one (migrating 5G micro services) in an open-hardware environment instead of COTS hardware, and
investigating hardware changes to the existing COTS hardware to answer our research questions
instead of only relying on software additions. First, approaching the 5G application in open-hardware
will yield scientific results of the same quality even if it will have less economic impact due to the
academic nature of the underlying platform. Second, if it is not possible to achieve our objectives on
COTS hardware with software changes only, we will add a work package that evaluates what minimal
hardware changes are necessary to the COTS hardware to properly achieve our research objectives.
We expect these alternative options to yield qualitative results that will provide publishable findings
and are confident that the work packages are flexible enough to mitigate any failures of single tasks
within a work package.
5 References
[1] Alder, F., Kurnikov, A., Paverd, A., and Asokan, N. Migrating sgx enclaves with persistent state.

In 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN) (2018), IEEE, pp. 195–206.

[2] ARM. Building a secure system using TrustZone technology. ARM white paper (2009).

[3] Brasser, F., El Mahjoub, B., Sadeghi, A.-R., Wachsmann, C., and Koeberl, P. Tytan: tiny trust anchor
for tiny devices. In 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC) (2015), IEEE,
pp. 1–6.

[4] Burns, A., Davis, R. I., Baruah, S., and Bate, I. Robust mixed-criticality systems. IEEE Transactions
on Computers 67, 10 (2018), 1478–1491.

[5] Burns, A., and Wellings, A. J. Real-time systems and programming languages: Ada 95, real-time
Java, and real-time POSIX. Pearson Education, 2001.

[6] Chiodo, M., Giusto, P., Jurecska, A., Hsieh, H. C., Sangiovanni-Vincentelli, A., and Lavagno, L.
Hardware-software codesign of embedded systems. IEEE micro 14, 4 (1994), 26–36.

[7] Costan, V., Lebedev, I. A., and Devadas, S. Sanctum: Minimal hardware extensions for strong
software isolation. In 25th USENIX Security Symposium, USENIX Security 16 (2016), pp. 857–874.

[8] Edwards, S., Lavagno, L., Lee, E. A., and Sangiovanni-Vincentelli, A. Design of embedded systems:
Formal models, validation, and synthesis. Proceedings of the IEEE 85, 3 (1997), 366–390.

[9] Eldefrawy, K., Tsudik, G., Francillon, A., and Perito, D. Smart: Secure and minimal architecture for
(establishing dynamic) root of trust. In NDSS (2012), vol. 12, pp. 1–15.

[10] Global Platform. The trusted execution environment: Delivering enhanced security at a lower
cost to the mobile market. Global Platform white paper (2015).

Fritz Alder Research Foundation - Flanders (FWO) accepted grant No. 11E5120N



Predictable resource sharing and resource availability with Trusted Execution Environments 10

[11] Gu, L., and Stankovic, J. A. t-kernel: Providing reliable os support to wireless sensor networks. In
Proceedings of the 4th international conference on Embedded networked sensor systems (2006),
ACM, pp. 1–14.

[12] Intel. Software guard extensions developer guide. https://software.intel.com/en-us/
documentation/sgx-developer-guide, 2017.

[13] Jensen, E. D., Locke, C. D., and Tokuda, H. A time-driven scheduling model for real-time operating
systems. In RTSS (1985), vol. 85, pp. 112–122.

[14] Koeberl, P., Schulz, S., Sadeghi, A.-R., and Varadharajan, V. Trustlite: A security architecture for
tiny embedded devices. In Proceedings of the Ninth European Conference on Computer Systems
(2014), ACM, p. 10.

[15] Krishna, C. M. Real-time systems. Wiley Encyclopedia of Electrical and Electronics Engineering
(2001).

[16] Leiner, B., Schlager, M., Obermaisser, R., and Huber, B. A comparison of partitioning operating
systems for integrated systems. In International Conference on Computer Safety, Reliability, and
Security (2007), Springer, pp. 342–355.

[17] Masti, R. J., Marforio, C., Ranganathan, A., Francillon, A., and Capkun, S. Enabling trusted schedul-
ing in embedded systems. In Proceedings of the 28th Annual Computer Security Applications
Conference (2012), ACM, pp. 61–70.

[18] Noorman, J., Van Bulck, J., Mühlberg, J. T., Piessens, F., Maene, P., Preneel, B., Verbauwhede,
I., Götzfried, J., Müller, T., and Freiling, F. Sancus 2.0: A low-cost security architecture for IoT
devices. ACM Transactions on Privacy and Security (TOPS) 20, 3 (September 2017), 7:1–7:33.

[19] Seshadri, A., Luk, M., and Perrig, A. Sake: Software attestation for key establishment in sensor
networks. In International Conference on Distributed Computing in Sensor Systems (2008),
Springer, pp. 372–385.

[20] Seshadri, A., Perrig, A., Van Doorn, L., and Khosla, P. Swatt: Software-based attestation for
embedded devices. In IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004 (2004),
IEEE, pp. 272–282.

[21] Shaneck, M., Mahadevan, K., Kher, V., and Kim, Y. Remote software-based attestation for wireless
sensors. In European Workshop on Security in Ad-hoc and Sensor Networks (2005), Springer,
pp. 27–41.

[22] Strackx, R., and Piessens, F. Fides: Selectively hardening software application components against
kernel-level or process-level malware. In Proceedings of the 2012 ACM conference on Computer
and Communications Security (CCS) (2012), ACM, pp. 2–13.

[23] Trusted Computing Group. TPM main specification level 2 version 1.2, revision 116.

[24] Van Bulck, J., Mühlberg, J. T., and Piessens, F. VulCAN: Efficient component authentication and
software isolation for automotive control networks. In Proceedings of the 33th Annual Computer
Security Applications Conference (ACSAC’17) (2017), ACM.

[25] Van Bulck, J., Noorman, J., Mühlberg, J. T., and Piessens, F. Towards availability and real-time guar-
antees for protected module architectures. In Companion Proceedings of the 15th International
Conference on Modularity (MASS’16) (2016), ACM, pp. 146–151.

Fritz Alder Research Foundation - Flanders (FWO) accepted grant No. 11E5120N


