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Abstract

Modern computing is increasingly characterized by an abundance of connectivity
between networked devices and a sharing of resources on local devices. While
this development has created a range of positive opportunities in terms of
productivity and technical capabilities, it also opens up modern systems to
security issues that were not as critical in the previously insulated systems.
Protecting confidentiality and integrity has thus become an integral concern
and isolation mechanisms already enabled a type of computing where programs
share their resources with other, entirely untrusted, programs.

One approach to ensure the security on such systems are hardware isolation
approaches, such as trusted execution environments (TEEs). TEEs aim to
isolate programs and shield them from accesses by any other part of the system
that is not within the trusted computing base. Specifically, hardware-based
TEEs achieve this by employing modifications to the underlying computing
architecture that limit access to specific interactions and deny any other access.
One type of TEE protects code in so-called enclaves that draw the protection
boundary at the program level and usually require coordinated interactions
between an untrusted and a trusted program within the same address space.

This dissertation advances the state of the art for this type of TEEs in
two directions. First, we investigate availability guarantees on lightweight
architectures and equip TEEs for real-time applications. We do this with
a hardware-software co-design that places a real-time scheduler inside of an
enclave, in order to provide other enclaves with strong availability guarantees.
This allows us to combine the approach of openly sharing resources between
mutually distrusting parties with the realm of safety-critical devices that must
meet real-time deadlines. Our solution can be seen as a first step to apply
modern TEE capabilities to the slow-moving but critical area of real-time and
mixed-criticality systems on lightweight computing architectures.
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Second, this dissertation investigates software responsibilities of Intel Software
Guard Extensions (SGX) enclave shielding runtimes. This growing and diverse
ecosystem is not sufficiently understood and we make contributions in two
parts. First, we manually find and report issues at the low-level transition
between enclave and untrusted domain. Our work shows that every extended
architectural feature in a processor that the enclave may rely on must be
adequately sanitized and initialized to a secure state before being used inside the
isolated area. The results show that low-level configuration registers for floating-
point accelerators are widely overlooked, and the impacts of this misconfiguration
are more dangerous than may be intuitive. Since modern processor architectures
are increasingly complex and legacy features are rarely removed, we then
develop a tool that helps in automatically finding interface vulnerabilities. This
tool, named Pandora, targets the crucial area of enclave shielding runtimes
that provide the basis for most projects running in enclave-based TEEs like
Intel SGX. Pandora saves the enclave memory at creation time and then uses
symbolic execution to simulate execution of this truthful view of the enclave.
We use Pandora to automatically detect multiple vulnerabilities across various
enclave shielding runtimes, and use it to help vendors in validating their applied
mitigations. Our work on Pandora is the first analysis of arbitrary Intel SGX
enclaves that is able to automatically find vulnerabilities such as the vulnerability
class of improper pointer alignment.

In summary, this dissertation extends the range of applicability of TEEs and
secures TEEs by uncovering new vulnerabilities and automatically finding known
vulnerabilities in enclave software. Our work thus serves as a fundament for
future work to strengthen the capabilities of future TEEs and helps projects to
secure their software on existing TEEs against known vulnerabilities.



Beknopte Samenvatting

Het gebruik van moderne informatietechnologie leidt tot meer productiviteit en
technische mogelijkheden, zowel door de toenemende connectiviteit in computer-
netwerken, als door het delen van computersystemen door meerdere, onderling
onvertrouwde applicaties. Deze evoluties stellen hedendaagse computersystemen
echter ook in toenemende mate bloot aan beveiligingsproblemen en onderstrepen
het belang van het beschermen van vertrouwelijke informatie en integriteit van
berekeningen.

Een belangrijke bouwsteen om de veiligheid van computersystemen te
garanderen, is hardwarematige isolatie, waar recente ontwikkelingen op het
gebied van vertrouwde uitvoeringsomgevingen bijzonder veelbelovend lijken.
Zulke vertrouwde uitvoeringsomgevingen stellen aanpassingen voor aan de
onderliggende computerarchitectuur om beschermde programma’s strikt af
te schermen in zogenaamde enclaves, die geisoleerd zijn van alle andere,
onvertrouwde software op het doelapparaat, inclusief zelfs het besturingssysteem.

Dit proefschrift draagt bij aan het verbeteren van hedendaagse vertrouwde
uitvoeringsomgevingen op twee manieren. Ten eerste richten we ons op kleine,
ingebedde computerchips en onderzoeken we hoe vertrouwde uitvoeringsom-
gevingen kunnen ingezet worden in real-time omgevingen. Ons resulterende
hardware-software co-design zondert een real-time planningsalgoritme af in een
bevoorrechte enclave, om zo de beschikbaarheid van afzonderlijke applicatie-
enclaves te garanderen. Deze oplossing vormt een eerste stap om vertrouwde
uitvoeringsomgevingen uit te breiden met sterke beschikbaarheidsgaranties,
zodat dat ze kunnen worden ingezet voor het beveiligen van kritische, ingebedde
apparaten die strikte real-time deadlines moeten halen.

Ten tweede onderzoeken we de resterende softwareverantwoordelijkheden voor
enclaves die gebruik maken van de wijdverspreide SGX-extensies in recente Intel-
processoren. Dit proefschrift bevordert de veiligheid van het groeiende en diverse
SGX-ecosysteem op twee manieren. Als eerste bijdrage ontdekken en rapporteren
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we subtiele gebreken in de cruciale initialisatielogica die verantwoordelijk is om de
overgang naar de enclave in goede banen te leiden. Meer bepaald laat onze studie
van populaire SGX-ontwikkelingsomgevingen zien dat het veilig initialiseren van
processorconfiguratieregisters voor zwevendekommabewerkingen op grote schaal
over het hoofd werd gezien. In verschillende praktische aanvalsscenario’s tonen
we bovendien aan dat de gevolgen van deze verkeerde configuratie gevaarlijker
zijn dan intuitief kan lijken. Dit vormt de motivatie voor onze tweede bijdrage,
waar we een automatische methode onderzoeken om interfacekwetsbaarheden in
SGX-ontwikkelingsomgevingen te vinden. Daarbij ontwikkelen we een praktische
toepassing, Pandora genaamd, die het geheugen van een willekeurige SGX-
enclave waarheidsgetrouw kan reconstrueren om vervolgens een symbolische
uitvoering van de enclave nauwgezet te simuleren. Pandora is in staat om
automatisch meerdere onbekende kwetsbaarheden te detecteren in verschillende
SGX-ontwikkelingsomgevingen en kan bovendien helpen om de toegepaste
mitigaties te valideren.

Samengevat breidt dit proefschrift het toepassingsgebied van vertrouwde
uitvoeringsomgevingen uit naar real-time omgevingen, en dragen we bij aan het
beter begrijpen en valideren van resterende softwareverantwoordelijkheden. Ons
werk kan dus als basis dienen voor toekomstig onderzoek om de mogelijkheden
en veiligheid van opkomende vertrouwde uitvoeringsomgevingen te versterken,
zowel op hardware als op software vlak.
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Chapter 1

Introduction

With an ever-decreasing cost of computation resources comes an ever-increasing
number of opportunities these resources present. Where devices like the oft-
cited and highly specialized Apollo guidance computer were unique at their
time, devices of similar capabilities have nowadays become commonplace. On
the other end of the computing spectrum, highly capable server hardware
has become ubiquitous and enables extensive computations on a large scale.
Across this spectrum, modern computing architectures are defined by two
fundamental characteristics: connectivity to a network of other devices and the
increased sharing of devices between potentially heterogeneous stakeholders.
Both aspects significantly impact the security of underlying systems. Networking
and potentially even global access to a system make any vulnerability an
immediate and possibly global threat to a large number of affected systems.
Similarly, sharing a platform between potentially unaffiliated stakeholders
threatens the confidentiality and integrity of computations if the users are
not adequately isolated from each other. In embedded computing, such as
safety-critical applications, availability is often an additional concern, and
global networking or sharing resources with unknown parties is thus rarely
implemented to limit the system’s exposure to possible attacks.

Many approaches exist to shield secrets from the impacts of arbitrary network
attackers or harmful stakeholders on the same platform. Cryptography allows
secret communication between software components over an untrusted network.
This is also known as protecting data in transit, and cryptography has established
itself as the de-facto standard in modern Internet communication. Encryption
is furthermore a powerful paradigm to address the issue of protecting against
stakeholders that may access archived data, also called protection of data at
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rest. However, to protect data that needs to be accessed, also called protection
of data in use, established encryption algorithms are insufficient as they require
decryption prior to computation on encrypted data. To address this, multi-
party computation [133] and homomorphic encryption [1] are two active areas
of research. An orthogonal approach to pure cryptography is to modify the
underlying hardware to isolate to-be-protected code from the potentially harmful
environment. While these approaches often still utilize cryptographic primitives
to protect communication and data at rest, their benefit is that data in use
must not be encrypted since the computing party has exclusive access to it.
Theoretically, this requires little to no computational overhead to operate on
data in use as the overhead is spent in terms of additional hardware to access
the data and not during runtime.

In the trajectory of this Ph.D., we focused on the area that is nowadays known
as confidential computing, or trusted execution environments (TEEs). TEEs
are a type of hardware primitive that isolates software components from the
surrounding system [38, 122]. Other hardware approaches with similar or
overlapping goals include trusted platform modules (TPMs) [148], virtualization
isolation, capability architectures [172], and CPU privilege levels.

This dissertation makes contributions on two fronts. First, we address the gap of
applying TEE architectures in safety-critical systems. Our work AION, for the
first time, enables availability on the class of embedded enclave architectures,
prototyped on the research architecture Sancus [106]. Second, we address the
growing complexity of server TEE architectures such as the x86-based Intel
Software Guard Extensions (SGX) [11, 98] and the need for proper sanitization
when entering and computing in those complex isolation environments. In this
part, we first show that floating-point accelerators can be prone to fault-injection
attacks via their status and control registers if not properly sanitized on enclave
entry. As a follow-up, our contribution Pandora combines insights from this
earlier work and related work. With Pandora, we can automatically analyze
enclaves from the first instruction to detect a range of vulnerability classes.

1.1 Confidential Computing

TEEs are hardware extensions to processor architectures that allow software to
shield a region in memory from unwanted access [38]. In doing so, hardware-
based TEEs that we consider in this dissertation place their root of trust in
exactly these instruction set architecture (ISA) changes. The trusted computing
base (TCB) of the resulting shielded environment is thus only the hardware
and its associated microcode, as well as the shielded environment itself [122].
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This is a drastic reduction to the TCB in the absence of a TEE where the
complete software stack that an application is running on has to be trusted.
Figure 1.1 illustrates the different levels of encapsulation that modern TEEs
provide. Without trusted hardware on the left of the figure, an application
receives only protection guarantees resulting from virtual memory management
and can, for example, be accessed by the underlying guest operating system
(OS) which in turn can itself be accessed by the underlying hypervisor. The only
protection with virtual memory comes from the underlying layer creating virtual
address spaces that prevent parallel entities on the same level from accessing
an entity’s data. For a guest OS, this means that the hypervisor is trusted to
set up this protection properly, and for an application, the guest OS is trusted
to shield an application from other applications running on the same system.
In this case, the TCB is quite large, as any module in the aforementioned
stack has to be trusted not to leak secrets or impact the application’s integrity.
The promise of trusted execution is to disrupt this stacked layering of trust.
Confidential computing and specifically TEEs present two alternative models of
layering: enclave shielding and virtual machine (VM) shielding [38]. In enclave
shielding, the application itself is isolated from the surrounding environment,
such as the guest OS and other applications. To keep the TCB of an enclaved
application minimal, a legacy application can be split up into an untrusted and
an enclaved application, and communication between the two can be set up
to provide only security-critical services from inside the enclave. Essentially,
however, the TCB of the small enclave application only consists of itself and
the associated code inside the trusted environment, and the second, untrusted,
part of the application must be seen as potentially compromised. To address
the complexity of splitting applications into a trusted and an untrusted part,
VM shielding draws a larger isolation boundary and also includes the guest OS
itself and co-located applications from the underlying hypervisor. This widens
the TCB but has the benefit of easing the applicability of this approach since
developers can seamlessly adopt many legacy applications into such a VM-based
TEE environment.

The choice between both approaches lies in the size of the TCB versus the
usability and direct applicability of established and legacy code in the isolation
environment. Enclave architectures may suffer in their usability from the small
TCB as dynamic libraries may not be usable as the guest OS is untrusted.
Similarly, enclaves cannot execute system calls directly from within the enclave.
They must either execute system calls via the untrusted application or substitute
them for secure versions from within the enclave. VM architectures may
accommodate this limitation at the cost of a larger TCB and associated higher
computational overhead per isolated application.

While the specific guarantees by a TEE are not clearly defined across the
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Figure 1.1: Overview of confidential computing architecture paradigms. Green
boxes (bold frame) denote the trusted computing base of an application. Trusted
hardware prevents access from the guest OS to the application or from the
hypervisor to the guest OS, respectively.

ecosystem, the following properties are relevant in the context of this dissertation
and can also be seen as the core parts of confidential computing [37]:

Data confidentiality and integrity: Software running inside the isolated
environment can protect the confidentiality and integrity of data and
ensure that access to the protected data is restricted to the TCB of the
isolated software and that untrusted sources cannot tamper this data.

Code integrity: The untrusted environment cannot modify the code executing
inside the isolated environment. While the untrusted environment may
be able to trigger interrupts that disrupt the execution, all switches into
the isolated environment are restricted to predefined entry points.

Attestability: The state of the software loaded in the isolated environment
can be proven and reported to an outside stakeholder who can use this
proof to establish trust into and create a secure communication channel
with the software running in the TEE.

Additional orthogonal properties may be common across multiple TEEs
and be useful for certain applications. Such additional properties include
confidentiality of isolated code, recoverability from flaws in the underlying
hardware, authentication of isolation environments prior to their launch, or
direct access to memory-mapped I/O (MMIO) devices from within the isolated
environment [37]. We will introduce additional concepts where necessary and
when other properties are relevant to the research described in this dissertation.
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This dissertation exclusively focuses on the group of enclave architectures.
Where relevant, we draw parallels to and reflect insights onto other VM-based
architectures such as ARM confidential compute architecture (CCA) [15], Intel
Trust Domain Extensions (TDX) [71], AMD Secure Encrypted Virtualization
(SEV) [9], and Keystone [86]. In this dissertation, we investigate state-of-the-art,
off-the-shelf enclave architectures such as Intel SGX and explore new hardware-
software co-designs on research prototype architectures. In the following, we first
give an overview of the intricacies of enclave architectures and then introduce
the two TEEs that are relevant in this dissertation: Sancus [106] and Intel
SGX [40]. Sancus is used as the underlying architecture for the first contribution
presented in Chapter 2, and Intel SGX is the underlying architecture for the
second and third contribution presented in Chapter 3 and 4.

1.1.1 Enclave Architectures

The work presented in this dissertation primarily centers around enclave
architectures. These architectures have two core benefits over the VM-based
approach: they require a simpler architecture and no virtualization support and
thus also apply to light-weight embedded platforms, and they allow to keep
the TCB minimal versus VM-based TEEs where the isolation spans a complete
guest OS. However, a downside of enclave architectures usually stems from the
same lack of a trusted OS in the sense that all code has to statically be included
in the loaded enclave instead of dynamically accessing libraries from a shared
page set up by the OS. This complicates the compilation process, bloats up
enclaves as multiple enclaves cannot share the same virtual memory pages with
shared libraries, and complicates the development as developers have to ensure
that all functionality is included within the single binary. Similarly, system
calls within enclaves require a potentially costly switch from the enclave to
the untrusted OS. Any such switch endangers an enclave’s security properties
and must be handled carefully to neither leak secrets nor rely on potentially
harmful information when returning. Both issues may increase development
complexity for enclave applications as legacy applications have to be either
rewritten for this new paradigm or encapsulated into an enclave runtime that
can transparently provide secure versions of system calls and library accesses.

Enclave Call Hierarchy To reduce the exposure of an enclave to attacks, all
TEEs discussed in the following only support access by jumping to a single
pre-defined entry point in the enclave boundary. From this single entry point,
the enclave then multiplexes calls to its enclave functions while allowing the
developers to carefully design and potentially verify the security of the entry
point code. Figure 1.2 illustrates the common call hierarchy from the point of
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Assembly Runtime Enclave
stub library libraries

Figure 1.2: Call hierarchy in enclave architectures. On enclave entry, @ an

assembly stub sanitizes inputs and @ passes execution to the runtime, which
@ calls the application. Application executions may perform @ multiple calls

to enclave libraries and @ - @ either complete an ecall by returning the call
via the runtime and the assembly stub or perform an ocall to the untrusted
world.

entering into the single entry point of the enclave to the return to the untrusted
world, usually in the form of the untrusted part of an enclaved application. As
a common first step, a small section of code, usually programmed in assembly,
sanitizes the potentially malicious register state. This section of the program
is also known as the application binary interface (ABI) sanitization and also
includes a setup of an in-enclave stack and preparing the register state for the
switch to code written in higher-level programming languages. The expectation
of compilers for higher-level programming languages is usually that the ABI
adheres to specific guidelines, such as the System-V ABI [93]. One important
task of the ABI assembly stub in enclaves is thus to prepare the ABI and set up
the configuration and interface for the compiler-expected state. Depending on
whether an enclave runtime is used or not, a dedicated runtime library may serve
as a middle point between the ABI sanitization and the enclave application.
This runtime library may take over parts of the sanitization of the application
programming interface (API), e.g., sanitization of passed pointers. Finally, the
runtime library switches to the enclave application, which may make arbitrarily
many calls to statically linked libraries within the enclave boundary. Whenever
this application enclave has finished its computation, the call is usually returned
via the runtime library and the assembly stub to sanitize the ABI and API
state, this time to scrub it from secrets that may leak to the untrusted OS.

1.1.2 Sancus

On the lower end of the computing spectrum, lightweight processor architectures
such as the Texas Instruments MSP430 have a 16-bit architecture, run at clock
speeds of 1-20 MHz and lack many extended processor features that have become
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commonplace in modern, more complex processor designs. The core benefits
of these processor families are the very low costs per chip and the very low
power consumption, combined with the fact that not every application requires
extensive computational capabilities. Sancus [106] is an open-source open-
hardware research prototype TEE that is built on top of such a lightweight
architecture, specifically the openMSP430 core by Olivier Girard.! The main
contribution of Sancus is that it brings an enclave architecture to the low-
level openMSP430 processor that before supported neither hardware isolation
mechanisms nor even a cryptographic coprocessor. Data confidentiality and
integrity are achieved with a program counter-based access control that only
grants read or write access to a protected region if the current execution is
within this region. Code integrity is achieved by limiting switches to the
enclave to the first address in the enclave address range and preventing any
jumps into the middle of a protected region. The above guarantees allow
multiple mutually distrusting enclaves to coexist on the same device without
compromising their confidentiality or integrity. To enable secure communication
between enclaves, the Sancus design allows enclaves to directly call other enclaves
and retrieve the identifier of a caller enclave. Remote attestation with external
stakeholders is secured with symmetric keys that are deterministically derived
based on device identity and the initial hash of the protected region. Lastly,
Sancus, as a hardware-software co-design, also provides compiler modifications
to LLVM [92] that allow developers to initialize, program, and interact with
enclaves conveniently.

While the Sancus architecture is in many ways simpler than higher-level
architectures like Intel SGX, its simplicity allows for a range of features that
do not exist on these more complex architectures: secure access to MMIO
peripherals from within an enclave, enclaves as interrupt handlers, and driver
enclaves that can expose peripherals to other enclaves or untrusted tasks.

Sancus has served as the basis for a range of applications and extensions, such
as partial exploratory support for interruptible enclaves [156, 158], side-channel
resistant compilers [25, 170], automotive applications [155, 162, 169], and smart
home applications [103].

1.1.3 Intel SGX

Intel SGX is an enclave architecture that, as of 2023, has been available
on processors of the Core-i series from 2015 (generation “Skylake”) to 2020
(generation “Comet Lake”) as well as on server processors since 2015 [72].

Ihttps://opencores.org/projects/openmsp430
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In contrast to MSP430, x86 uses a more complex memory architecture based on
virtual address spaces. Instead of the program counter-based access protection
used in Sancus, Intel SGX uses an enclave page cache (EPC) map that tracks
the assignment of virtual pages to enclaves. Since the underlying operating
system is seen as fully untrusted but still manages the memory allocation, the
assigned EPC pages are protected on enclave creation when the enclave is loaded
and the pages are added to the enclave address range (called the ELRANGE) [40].
Upon finalization of the enclave’s initialization, an enclave-specific value called
the MRENCLAVE value is calculated from all initial enclave pages. In cooperation
with some architectural enclaves, this MRENCLAVE value can be used in remote
attestation to authenticate the enclave to remote parties and establish a secure
channel with remote stakeholders or other enclaves. Importantly, however,
this MRENCLAVE value also requires that all initializations of the same enclave
result in the same hash, independently of where the enclave has been loaded in
the virtual address space [11]. This requires additional complexity within the
enclave as common software relocation mechanisms and position-independent
code must be initialized within the enclave instead of untrusted software being
able to reposition code after loading it into memory.

Once an enclave has been initialized, it can only be entered via special
instructions that jump to a predefined enclave entry [98]. This enclave entry is
usually written in assembly and follows the same principles as described above
in Section 1.1.1. Aside from these ecalls into the enclave, Intel SGX also
defines ocalls as the reverse operation where an enclave calls a function outside
the enclave that then returns to the enclave. Additional complexity is added by
special in-enclave structures such as the SGX enclave control structure (SECS)
and thread control structure (TCS) pages that contain important architectural
enclave information and local enclave thread information, respectively.

Enclave Shielding Runtimes

Several shielding runtimes have been developed for Intel SGX and have become
the de-facto standard for developing enclave applications. These shielding
runtimes provide multiple benefits to an application developer: they govern
the switches between untrusted and trusted world for ecalls and ocalls;
they administer the relocation of position-independent code inside the enclave
as part of an initialization step; they provide crucial functions that ease the
programming of applications inside the enclave, like functions to check whether
a pointer lies inside or outside the enclave; and they often provide an interface
to marshall and securely copy data structures into and out of the enclave.
Figure 1.3 illustrates the landscape of Intel SGX applications and a part of the
ecosystem of these shielding runtimes that has developed as of 2023. While
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Figure 1.3: Intel SGX shielding runtime ecosystem of production-ready projects.
Most projects depend on only a few root projects (W) that provide core enclave
functionality.

many applications are based on the Intel SGX software development kit (SDK),
a growing number of projects are based on other shielding runtimes such as Open
Enclave [101] or Gramine [144]. Notably, only a few root-level projects exist that
serve as the basis TCB for many other projects. All highlighted projects in the
figure provide entry-level assembly code that sanitizes the potentially malicious
input from the untrusted environment and also provides developers with the
functionality to either transparently or actively interact with the untrusted
environment securely.
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1.2 Dissertation Motivation and Contributions

In light of this background, we present the three core contributions of this
dissertation: Chapter 2 extends the protection guarantees of existing embedded
TEEs and Chapter 3 and 4 uncover and automatically detect interface
sanitization issues in Intel SGX.

1.2.1 Availability Guarantees for Enclaves

As a first contribution, Chapter 2 presents AION, a hardware-software co-design
that can ensure the availability of multiple mutually distrusting parties at the
same time. While Sancus can provide strong confidentiality and integrity
guarantees to mutually distrusting enclaves, similar to many other TEE
architectures, it does not guarantee the availability of any of its protected
regions. Specifically, any enclave protected on a Sancus system can be ensured
that its confidentiality is protected at all times and that when it executes, its
code integrity is protected as well. However, other enclaves or even untrusted
code can impact the availability of enclaves by either never scheduling the
enclave or triggering interrupts to occur when the enclave is executing. This
inevitably results in attackers being able to disrupt deadlines that enclaves may
need to meet in a mixed-criticality or even safety-critical system.

Enclave architectures already provide strong security guarantees and are ideal
for protecting multiple stakeholders at once that execute their code on a mixed-
criticality platform. To additionally guarantee availability, we designed ATON
as an extension to enclave architectures. At its core, AION moves the real-time
scheduler of the system into an enclave. This ensures that the scheduler is
protected from outside influences and has the additional benefit that other
enclaves do not need to trust the scheduler enclave for confidentiality and
integrity since the security protections by the TEE also apply across enclaves.
If these other enclaves are willing to trust the scheduler enclave for availability,
however, they can request to experience periodic scheduling or similar scheduling
guarantees as needed. The scheduler enclave then serves as a small TCB for
availability only and must ensure that it only approves scheduling guarantees
when they are possible even in a worst-case scenario. To provide hard guarantees
on the upper bound of this worst-case scenario, we additionally equip A1ON
with a concept of bounded atomicity. Only the scheduler enclave is in full
control of interruptability and can disable interrupts. All other enclaves and
untrusted software on the system only have access to a special clix instruction
that disables interrupts for a bounded number of cycles. A specially designed
availability monitor and an exception engine for enclaves ensure the correct



DISSERTATION MOTIVATION AND CONTRIBUTIONS 11

handling of all edge cases in hardware. With this hardware-software co-design,
AION can provide hard real-time guarantees to multiple stakeholders at once,
allowing system designers and developers to specifically design their real-time
applications with strong confidentiality, integrity, and availability protections.

Our work, for the first time, combines lightweight embedded TEEs with
mixed-criticality systems requiring strong hard real-time guarantees. While
architectures like ARM TrustZone have existed for multiple years and are starting
to be applied in embedded applications that require availability guarantees, AION
demonstrates that availability protections are also possible without placing the
scheduler into the TCB for confidentiality and integrity. Since ARM TrustZone is
similar to the VM-based model explained above, this nuanced trust relationship
is not possible, as the scheduler and the complete guest OS are fully trusted
by the protected applications. AION furthermore demonstrates that even the
architecture class below classical TrustZone devices, i.e., the architecture class
of 16-bit processors, can benefit from TEE capabilities with strong availability
guarantees.

Publication data:

F. Alder, J. Van Bulck, F. Piessens, and J. T. Miihlberg. “Aion: Enabling
Open Systems through Strong Availability Guarantees for Enclaves”. In:
Proceedings of the 28th ACM Conference on Computer and Communications
Security (CCS’21). ACM, 2021, pp. 1357-1372

1.2.2 Interface Sanitization in Intel SGX

The second part of this dissertation is concerned with the interface between the
untrusted world and Intel SGX enclaves.

As a first contribution in this part, we show in Chapter 3 that former register
sanitization in Intel SGX shielding runtimes was insufficient. Specifically, most
shielding runtimes omitted to set configuration and control registers of the x87
floating-point unit (FPU) and of the Streaming SIMD Extensions (SSE) to a
safe value upon entering the enclave. At the time of investigation, all seven
investigated shielding runtimes were vulnerable to at least some form of FPU
register attack. Our work shows that even seemingly minor control registers can
have potentially grave impacts due to the strong integrity protection promises
of Intel SGX. We highlight this with three case studies and illustrate that
unexpected floating point precision and rounding modes can majorly impact the
resulting quality of generated output. These attacks are non-trivial to mitigate
and show that exception masks can even leak enclave secrets in some cases.
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This contribution does not stand alone in showing that the interface between
untrusted world and Intel SGX enclaves must be properly sanitized. Van Bulck
et al., for example, showed in 2019 that all enclave interaction on both ABI
and API can be problematic if not handled carefully [157]. At the same time,
several of the investigated shielding runtimes are of high quality and investment
by the respective vendors, and the functions and assembly stubs that perform
sanitizations can be seen as having received extensive care from their developers.
For example, our study of shielding runtimes from 2022 showed that it is
common for these shielding runtimes to have changed as many lines of code
in the assembly stubs of up to two times their actual size since the project
began [153]. Yet, issues on both the ABI and API levels keep reoccurring, as
happened in early 2023, for example, when Intel provided new recommendations
of SSE configuration values that refine the earlier recommendations that were
also applied as a response to our attacks [73].

As a second contribution in this part, and this dissertation’s third and
final contribution, we thus present a framework in Chapter 4 that allows
symbolic execution of Intel SGX enclaves and finding known classes of interface
vulnerabilities, such as the ones reported in our earlier contribution. This
framework, called Pandora, brings several innovations to, for the first time,
allow principled and truthful symbolic execution of enclave binaries. Pandora
uses a novel initial phase to dump the full enclave memory at enclave creation
time and uses this dump to truthfully simulate enclave execution beginning at
the first assembly instruction. Prior work has already attempted and partially
succeeded in symbolically executing Intel SGX enclaves but has focussed on
the applications instead of the crucial but vulnerable shielding runtimes. Our
work, for the first time, takes care to fully encompass all functionality provided
by these enclave shielding runtimes without skipping or simulating essential
functionality. In addition, Pandora is written in a modular approach and can
utilize the analyses provided by the underlying symbolic execution engine angr
and pass information on to a new system of powerful plugins that can flexibly
be enabled on demand. These plugins extend the capabilities of angr and
perform the actual vulnerability detection and reporting. We use Pandora to
find seventeen new vulnerabilities across eight partially closed-source shielding
runtimes.

Publication data:

F. Alder, J. Van Bulck, D. Oswald, and F. Piessens. “Faulty Point Unit:
ABI poisoning attacks on Intel SGX”. in: Annual Computer Security
Applications Conference (ACSAC). 2020, pp. 415-427
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F. Alder, L.-A. Daniel, D. Oswald, F. Piessens, and J. Van Bulck. “Pandora:
Principled Symbolic Validation of Intel SGX Enclave Runtimes”. In: In
submission. 2023

1.2.3 Open Science and Ethical Considerations

All software vulnerabilities discussed in this work have been reported to the
respective vendors, and where possible, we have supported the vendors in
validating the applied mitigations. Overall, the work in this Ph.D. trajectory
has directly or indirectly led to the finding of 211 vulnerability instances,
the assignment of twelve common vulnerabilities and exposures (CVEs), and
software patches across nine projects. In several instances, our active engagement
with the open-source maintainers has led to more refined patches, thus improving
end-user security in the emerging Intel SGX software ecosystem. Furthermore,
all research performed during this dissertation has been open-sourced. For the
three core contributions of this dissertation, the details are:

A10N: Enabling Open Systems through Strong Availability Guarantees for
Enclaves The Sancus hardware and compiler infrastructure changes have been
included in the Sancus core architecture on GitHub.? All software modifications
to the Riot OS [17] were published as open source in their own repository
under the same Sancus organization®, and a Docker container with the AION
architecture is automatically built and provided on GitHub.

Faulty Point Unit: ABI Poisoning Attacks on Intel SGX During the course
of this contribution, we found and responsibly disclosed six vulnerabilities across
six runtimes, one of which is a runtime on the RISC-V architecture, leading to
the assignment of two CVEs. The artifact and corresponding Docker container
of this contribution are fully available on GitHub? and continuous integration
regularly verifies its reproducibility up to this date. As part of the ACSAC
conference, the artifact received the highest ACM rating of “Artifacts Evaluated
- Reusable v1.1”7, and the paper subsequently received a “distinguished paper
with artifacts” award.

2https://github.com/sancus-tee
Shttps://github.com/sancus-tee/sancus-riot
dnttps://github.com/fritzalder/faulty-point-unit
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Pandora: Principled Symbolic Execution of Intel SGX Enclaves At this
time, Pandora is in submission. During working on this project, we found 174
new vulnerability instances across 10 runtimes, leading to the assignment of
7 CVEs. Once this submission concludes, Pandora will be released as open-
source, together with extensive documentation to support its use during the
development processes of enclave software®.

1.3 Other Contributions

In parallel to the three major contributions outlined in this dissertation, I
authored or contributed to several additional publications that are summarized
as follows.

Efficient and Timely Revocation of V2X Credential In vehicle-to-everything
communication, vehicles are expected to communicate with an abundance of
other vehicles and communication parties alongside the road. To ensure the
security and safety of all involved participants, malicious or misbehaving parties
must be punishable in a timely manner, e.g., via revocation of their credentials
or pseudonyms. This paper presents a mechanism for self-revocation of vehicle
pseudonymous credentials based on a TEE inside each vehicle. The presented
mechanism is formally verified with the Tamarin prover and can provide a
predictable upper bound on revocation time based on configurable parameters.
In addition to the formal verification, the paper presents a statistical model
of the expected size of the revocation list of each network participant, and a
simulation to showcase its feasibility even for larger networks.

Gianluca Scopelliti is the main author of this work and developed the core
design together with Christoph Baumann. I contributed with discussions on
the design and the statistical model of the certificate revocation list as well as
writing of the concerned chapters.

G. Scopelliti, C. Baumann, F. Alder, E. Truyen, and J. T. Mihlberg.
“Efficient and Timely Revocation of V2X Credentials”. In: 31st Annual
Network and Distributed System Security Symposium (NDSS’24). The
Internet Society, 2024

Shttps://github.com/pandora-tee
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About Time: On the Challenges of Temporal Guarantees in Untrusted
Environments This paper investigates how time can be accessed by enclaves
from within a TEE and classifies five levels of this access: no access to trusted
time; checking the monotonicity of untrusted time; access to an external trusted
time source; access to the trusted time source with a known delay; and lastly
atomic access to the trusted time source. We found that Intel SGX can only
provide access to an external trusted time source when using Intel platform
services that are not always available. Furthermore, in the future, Intel SGX
enclaves may access trusted time atomically if never interrupted. Other TEEs
like Intel TDX or Arm CCA have the potential to provide access with a known
delay to a trusted time source, albeit most TEEs cannot access time atomically.
Our work concludes by enumerating multiple applications of trusted time in
TEEs and rating them according to their required trusted time level.

I was the main author of this paper and collaborated with Gianluca Scopelliti
and Jo Van Bulck under the supervision of Jan Tobias Miihlberg.

F. Alder, G. Scopelliti, J. Van Bulck, and J. T. Miithlberg. “About Time:
On the Challenges of Temporal Guarantees in Untrusted Environments”.
In: 6th Workshop on System Software for Trusted Ezecution (SysTEX
Workshop). 2023

End-to-End Security for Distributed Event-Driven Enclave Applications
on Heterogeneous TEEs Hardware isolation primitives provide strong local
assurances that can be attested to outside parties. This paper introduces a
framework that links local peripheral input on one device to a decision made
on another. With this so-called authentic execution, we can guarantee that a
decision made on a device has only been made as a response to peripheral input
received by a remotely attested device. Conversely, the output would not have
been created without adequate input. Our open-source framework supports
Sancus, Intel SGX, and ARM TrustZone to allow for heterogeneity, and we
showcase it with a case study of a smart home application.

Gianluca Scopelliti is the first author of this paper. I contributed with the
mentoring of Gianluca Scopelliti during his master’s thesis, contributed to the
current designs of the authentic execution framework, and aided in writing the
final text.

G. Scopelliti, S. Pouyanrad, J. Noorman, F. Alder, C. Baumann, F. Piessens,
and J. T. Miithlberg. “End-to-End Security for Distributed Event-Driven
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Enclave Applications on Heterogeneous TEEs”. In: ACM Transactions on
Privacy and Security (TOPS) (Apr. 2023)

A Case for Unified ABI Shielding in Intel SGX Runtime As a result of our
investigation of FPU sanitization in Intel SGX and the earlier work on Intel SGX
interface sanitization [157], this paper makes a case against the heterogeneous
landscape of enclave assembly code. Since most enclave shielding runtimes need
to perform the same register sanitization and need to set up their own secure
environment, we argue that unification of the small code base that performs this
task is necessary. Some intricacies would be necessary to allow for a diverse set
of environments and programming languages that follow the execution of the
unified stub, but a clear benefit would be the starkly reduced patch timelines
to mitigate known ABI-level issues.

Jo Van Bulck was the main author of this paper, and we shared work equally
under the supervision of Frank Piessens.

J. Van Bulck, F. Alder, and F. Piessens. “A Case for Unified ABI Shielding
in Intel SGX Runtimes”. In: 5th Workshop on System Software for Trusted
Ezxecution (SysTEX Workshop). 2022

Secure End-to-End Sensing in Supply Chains This paper serves as a case
study of how to protect complex supply chains by combining trusted hardware
and blockchain-backed ledgers. In supply chains, shipments are passed from
the producer over multiple shipment providers down to the final customer.
A common issue in this environment is trust, as in modern supply chains,
stakeholders rarely trust all other stakeholders that preceded it in the order of
events. If a shipment arrives with faults, a stakeholder may not always be able
to prove that the defect existed when it received the shipment. Similarly, even
the absence of faults must be proven, as a disrupted cold chain cannot always be
immediately detected. To tackle these issues, our work designs an architecture
that relies on embedded TEEs like Sancus to draw a secure, integrity-protected
path from the sensor to a blockchain-backed ledger in a cloud environment.
With this architecture, stakeholders no longer need to place trust in prior
stakeholders but only need to trust the underlying hardware and its integration
into the shipping unit.

Jan Pennekamp is the first author of this paper. He, I, Roman Matzutt, and
Jan Tobias Miihlberg had equal parts in writing under the supervision of
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Frank Piessens and Klaus Wehrle. This paper resulted in a bachelor’s thesis at
RWTH-Aachen University, which I co-supervised as an external advisor.

J. Pennekamp, F. Alder, R. Matzutt, J. T. Miihlberg, F. Piessens, and
K. Wehrle. “Secure End-to-End Sensing in Supply Chains”. In: 2020 IEEE
Conference on Communications and Network Security (CNS). 2020, pp. 1-6

1.4 Dissertation Qutline

The remainder of this dissertation is structured as follows. In the first part of
our contributions, Chapter 2 presents our work on AION, which brings strong
availability guarantees to lightweight enclave architectures. Chapter 3 then
begins the second part of our contributions with our attacks on Intel SGX via
the FPU configuration registers. To aid developers in this fast-paced landscape
of interface vulnerabilities, Chapter 4 continues this second part with our third
contribution and presents Pandora that can automatically detect common
vulnerabilities in enclave binaries. Chapter 5 then concludes this dissertation
and presents opportunities for future work.

Chapter 2 to 4 are based on the previously peer-reviewed publications as marked
in the respective chapters and only contain minor modifications to fit the style of
this text. A preamble precedes each chapter to place the work in the context of
this Ph.D. trajectory and to present related work in the area since publication.






Chapter 2

AION: Enabling Open
Systems through Strong
Availability Guarantees for
Enclaves

This chapter was previously published as:

F. Alder, J. Van Bulck, F. Piessens, and J. T. Miihlberg. “Aion: Enabling
Open Systems through Strong Availability Guarantees for Enclaves”. In:
Proceedings of the 28th ACM Conference on Computer and Communications
Security (CCS’21). ACM, 2021, pp. 1357-1372

Preamble

This first contribution has been the final result of long-going discussions in
our research group on interruptability and availability guarantees on hardware-
based trusted execution environments (TEEs). Many of these discussions started
before this Ph.D. trajectory began in 2019, as Jo Van Bulck already discussed
some weak points of architectures like Sancus when it comes to availability in his
master’s thesis [152]. A follow-up publication then outlined necessary steps to

19
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take to make Sancus enclave a candidate for real-time applications [156]. Many
of the ideas and contributions of that prior work have impacted the design of
AION.

The core issue with TEE architectures like Sancus at the time of publication was
that lightweight embedded security architectures prioritized the confidentiality
and integrity of a system at the cost of availability. For example, both the
original Sancus work [107] as well as the follow-up Sancus 2.0 version [106] were
configured to reset the processor when a violation occurs, and this was common
in similar architectures like SMART [50] or VRASED [109]. This, however, is a
stop-gap approach for any system that is supposed to provide availability, as
it gives attackers a convenient opportunity to reset the processor and impact
real-time deadlines. Similarly, neither the original Sancus 2.0 work nor any
related work at that time like SMART intended enclaves to be interruptible.
As a first work, TrustLite [83] explored a hardware-level interrupt engine for
enclaves that uses an exception engine to securely store the register state to a
secure location before sanitizing it for the untrusted exception handler. Van
Bulck et al. [156, 158] implemented an interrupt mechanism to Sancus enclaves
that is similar to this earlier work by TrustLite. Busi et al. [29] formally
verified a Sancus interrupt handler that was hardened against side channels.
An important drawback of these designs is, however, that interruptability
requires the cooperation of the enclave, as enclaves are able to completely
disable interrupts and stall the system. Orthogonally, Masti et al. [97] presented
a means of bounded atomicity in embedded system for scheduling decisions.
With AION we refine and combine these multiple directions of research and
present a solution to the long-standing development of enclave interruptability
and availability guarantees. AION ensures that enclaves can be interrupted
without impacting their security but cannot disable interrupts as a means of
unboundedly disrupting the availability of the whole system.

After the publication of AION, several works have approached the same issue
of availability on the ARM TrustZone architecture. RT-TEE [166] provides
the secure world with an event-driven hierarchical scheduler and device drivers
for I/O. This allows RT-TEE to guarantee availability even in the case that
the normal world is compromised. The authors showcase their prototype
on two types of processors and present several case studies showing their
approach’s feasibility. Furthermore, Van Eyck et al. built MrTEE as a practical
framework to build real-time compliant applications with commodity software
and hardware without requiring extensive software modifications, as is the case
with RT-TEE [161]. As a result of their underlying TrustZone architecture,
both essentially differ from the guarantees provided by AION. Where AION only
requires enclaves to trust the scheduler for availability only, as confidentiality and
integrity are protected by the underlying hardware mechanisms, TrustZone only
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provides the security guarantees for the whole secure world. Thus, the scheduler
that is executed in the secure world must be fully trusted by the protected
applications, both for availability as well as for confidentiality and integrity.
The TrustZone approaches are thus different in their isolation granularity from
the approaches discussed and presented in this chapter.

With the conference publication, ATON contributed an open-source artifact that
was integrated into the Sancus project!. This integration was not performed as
a duplication of the code base of Sancus but was instead embedded into the
existing code base. A Sancus core can be configured via pre-compiler directives
that define whether a Sancus core is generated with availability capabilities or
not. Together with this embedding into the existing core, we also integrated the
availability engine into the existing continuous integration pipeline of Sancus
and enabled regular testing of the AION hardware functionality, as well as the
regular building of Docker containers that can be used as a basis for development
with either ATON or Sancus. Additionally, as part of this artifact, ATON uses
a new, faster hardware simulator based on Verilator? that can generate cycle-
accurate simulations of AION within seconds instead of the prior simulator that
required several minutes for the same task. Lastly, AION was the basis for a
master’s thesis that investigated remaining issues concerning the schedulability
of systems built on AION [65].

2.1 Introduction

With the increased connectivity of devices all across the computing spectrum
comes an increasing demand for systems that are not locked down but are
more dynamic and open to changes after they are deployed in the real world.
An open system runs software components (tasks, processes, ...) from several
stakeholders that do not necessarily trust each other. The resources of such
system, including memory, devices, and the CPU, must be shared among these
software components without introducing security vulnerabilities that would
allow a malicious component to violate the security expectations of another
component. Traditionally, Operating System (OS) kernels have the responsibility
of enforcing appropriate isolation between components, and, hence, the OS
kernel has been part of the Trusted Computing Base (TCB).

However, experience has shown that operating system kernels can have
vulnerabilities too, and several approaches have been explored to reduce the
amount of trust in the OS kernel:

Thttps://github.com/sancus-tee
’https://verilator.org/
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First, there is a long line of work in reducing the size of kernels (e.g., move
to microkernels), or relying on simpler hypervisors or security monitors for
enforcing isolation [23, 94, 129]. The key idea is that the trusted layer of
software gets smaller, but all software components still need to fully trust the
system software for any of their security properties.

Second, formal verification of system software has been proposed as a mechanism
to reduce the likelihood of vulnerabilities, and, hence, to better justify the level
of trust in system software[66, 82].

Third, work in the trusted computing research area has developed the idea of
Trusted Execution Environments (TEEs) or enclaves [8, 19, 28, 83, 86, 98, 106].
These approaches make it possible to remove most (if not all) system software
from the TCB, but they cannot guarantee all desired security properties. More
specifically, while integrity and confidentiality of enclaves can be guaranteed
with a TCB consisting of just the enclave software itself and the hardware,
no availability guarantees can be provided. More generally, these systems can
provide strong guarantees for resources (like memory) that are spatially shared,
but not for resources (like CPU time) that are temporally shared. In the best
case (for instance, in Intel SGX), the operating system kernel can preempt
temporally shared resources from misbehaving enclaves, at the cost of having
to trust the kernel for availability properties. In other cases, there are no
availability guarantees in the presence of malicious enclaves.

The objective of this paper is to improve the state-of-the-art in this third
approach. We propose a hardware/software co-design that supports classic
enclave-like isolation of software components in an open system, and that
improves on that classic isolation by also providing availability guarantees. Our
system supports the secure temporal sharing of resources (including CPU and
1/0 devices) among mutually distrusting software components with a small
TCB. More specifically, a given enclave software component needs to trust:
(i) its own code and the hardware for confidentiality and integrity properties,
and (%) its own code, the hardware, the drivers of the shared devices it requires
access to, and a small, trusted scheduler enclave for availability properties.
Crucially, since the scheduler is only trusted for availability, our design protects
the confidentiality and integrity of vital enclave applications even against a
misbehaving scheduler. Furthermore, when the scheduler is well-behaved, our
design can provide strong availability guarantees (including real-time guarantees)
to software components in the presence of arbitrary malicious software on the
platform outside the TCB (including malicious enclaves, malicious drivers for
devices not used by this specific component, and system software besides the
trusted scheduler).

Our design targets small embedded systems (specifically, our prototype is based
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on a TT MSP430 16-bit processor running the RIOT OS), both because these
can benefit most from availability and real-time guarantees, and because this
allows us to focus on the essence of our design: building on preemption combined
with a safe bounded atomicity primitive. Extensions to larger systems, such as
for instance Intel SGX-scale processors, are not in the scope of this paper, and
are left for future work.

In summary, the contributions of this paper are:

e a novel hardware-software co-design of a security architecture for open
systems that extends the strong security properties of modern hardware
TEEs with strong guarantees on enclave availability, even in the presence
of powerful software adversaries on the same platform.

e a prototype implementation built by extending an existing TT MSP430-
based TEE and by extending the existing RIOT IoT operating system.

e a case-study driven evaluation of the security and availability provisions
and the costs of the design.

2.2 Problem and Assumptions

To illustrate the problem and our platform requirements, we first discuss the
base platform that we use as a starting point for our work. We then describe
a simple application scenario with specific security and availability needs that
cannot be realized with classic TEE implementations. Finally we generalize
this to derive platform requirements and discuss these in the context of related
work.

In general, we aim to support open systems, which are systems that allow
multiple distrusting stakeholders to dynamically load arbitrary applications
at runtime. While it is obviously possible to combine an open system with
priority-based scheduling, the interesting and most difficult case is dealing with
mutually distrusting stakeholders executing code with the same priority. Only
in this case resources have to be divided fairly.

2.2.1 Generalized Base Platform

The base platform we start from is an embedded TEE that provides an enclave-
like isolation mechanism. This base platform supports the creation of enclaves
that offer the following security guarantees. First, the software in an enclave is
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isolated from all other software on the same platform, including system software
such as the operating system. Second, enclaves support (local and remote)
attestation: they can provide cryptographic evidence about their identity
(characterized by a cryptographic hash of the binary code of the enclave). These
security guarantees rely on a small trusted computing base, sometimes even
only the hardware.

More specifically, in terms of isolation, the base platform guarantees that: (i) the
data section of an enclave is only accessible while executing code from the code
section of that same enclave, and (i) the code section can only be entered
through one or more designated entry points. These isolation guarantees are
simple, but they have been shown to be strong enough and useful to enforce
confidentiality and integrity properties of enclaved applications or modules.
For instance, Patrignani et al. [113] show how encapsulation mechanisms from
Java-like object-oriented languages can be securely compiled to a platform that
supports enclaves. This implies that confidentiality and integrity properties of
the enclave can be guaranteed in an open system: an enclave developer only
needs to trust (or verify) the code of their own enclave (and possibly other
enclaves that the enclave depends on, such as device driver enclaves). As a
consequence, mutually distrusting enclaves can co-exist on the platform, and
neither one needs to trust the other to maintain its own security, which is
limited to confidentiality and integrity. The construction and the benefits of
such a base platform is well understood, and Maene et al. [96] provide a survey
of existing platforms.

However, these platforms lack any kind of availability guarantee. On some
platforms [50, 106, 109] enclaves can protect themselves from being interrupted
(and, hence, get atomicity guarantees) for security purposes, but as a consequence
a misbehaving enclave can abuse such atomicity guarantees to disrupt the system
and make it unavailable to other enclaves. On systems [28, 83, 86, 98] where
enclaves are interruptible, on the other hand, enclaves do not get any guarantees
on progress. For instance, enclaves might never get scheduled, or when they are
scheduled they can get interrupted again without having made any progress.
Also, enclaves may need to acquire resources other than memory or CPU, e.g.,
access to I/O devices like sensors or communication channels, and no guarantees
can be provided that the enclave can acquire these within a bounded time
span. Note that some Memory-Mapped I/O (MMIO) devices may only use a
specific memory region to interact with the applications. This means that this
memory region needs to be temporally shared between applications as a spatial
sharing may not be possible for certain control or status bits. Finally, some
platforms handle security violations in such a way that a security violation from
one enclave can impede the progress of another one. For instance, a security
violation might lead to a platform reset [50, 106, 109].
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Figure 2.1: Simple example of two applications periodically accessing the same
shared resources.

This set of shortcomings leads us to the problem we set out to solve in this paper:
how can an enclave platform provide availability guarantees, while maintaining
the desired strong confidentiality and integrity guarantees, i.e., in particular
that only the hardware plus the enclave itself and any dependent enclaves need
to be trusted or verified. By doing so, the platform we design is the first enclave
platform to provide a strong notion of availability for mutually distrusting
enclaves, where neither one needs to trust the other to maintain its own security,
which includes confidentiality, integrity, and availability properties.

2.2.2 A Running Example

Figure 2.1 depicts a scenario with two applications A and B that execute
periodically, monitoring the same temperature sensor. Each application will
trigger an alert if the temperature exceeds a programmed threshold. These alerts
are communicated over the same, shared communication interface. We assume an
open system where all system resources, including the CPU, the sensor and the
communication interface, may be used by multiple applications. The deploying
stakeholders of A and B are neither aware of each other’s applications, nor would
they trust each other’s applications to behave collaboratively. However, both
stakeholders consider their applications to be critical as harm may be caused
if the alarms are not triggered within strict time bounds. The stakeholders



26 AION: ENABLING OPEN SYSTEMS THROUGH STRONG AVAILABILITY GUARANTEES FOR

ENCLAVES

do trust the execution platform to uphold a notion of spatial and temporal
isolation for their respective applications, and they may rely on primitives
such as remote attestation to be ensured of their application execution on
the intended platform. In regards to input and output from the temperature
sensor and to the communication interface, the applications trust the utilized
peripherals and an attacker controlling one of the peripherals themselves or
a failed sensor are out of scope of their attacker model. This means that the
platform aims to provide guarantees only up to the device boundaries and
tamper-resistant sensors or resilience against network denial-of-service attackers
are left to orthogonal research. At the same time, peripheral drivers on the
system and their communication with attached devices are in scope of the
guarantees as long as the attached peripheral is responsive.

While the spatial isolation properties required by our running example are
generally well understood in existing TEE platforms, these platforms do not
provide the required availability guarantees. This includes the temporal sharing
of MMIO devices. Specifically, the requirements of A and B to run periodically,
make progress, and get a guaranteed opportunity to send out the alert cannot
be realized with existing TEE platforms. Especially not considering that in our
example, no application trusts any other application on the device, for example
considering them as compromised by a strong software adversary.

2.2.3 Security & Availability Guarantees

We follow the established attacker model in TEE research (cf. Maene et al. [96]),
where all software that is not explicitly part of an application’s TCB is considered
to be under the control of the attacker. We consider hardware-level attacks to
be out of scope for our prototype. In particular, an attacker cannot physically
disconnect components or control peripherals.

Under this model, the platform should provide the same guarantees as
the described generalized base platform above, i.e., confidentiality and
integrity of mutually distrusting applications combined with the possibility
to attest applications to remote parties. As a generalization of the availability
requirements of the running example, the platform has to provide the
following additional availability guarantees for a bounded number of protected
applications:

e Bounded activation latency: the platform guarantees a specific finite
bound on the maximal time that can elapse between an event (in the
example case, a timer interrupt) and the execution of the first instruction
of an enclave that wants to act on the event.
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e Guaranteed progress: the platform guarantees that within a specific time
interval T' (e.g. a second), at least = percent of the CPU cycles goes to
the monitoring application (where T" and x can be configurable, but an
application can securely attest these values to a remote stakeholder).

o Guaranteed device access: device drivers can be programmed to provide
assurance to an application that it can acquire access to all devices
it needs within a specific finite time 7. Obviously, the temperature
monitoring application needs to trust (or verify) the code of the sensor
driver and communication channel driver, and use it appropriately to get
these guarantees. But an important point is that no other applications
competing for the same resources need to be trusted.

o Safety independence: faults in the executions of other applications do
not impact the availability of the temperature monitoring application.
Only the application itself (including dependent code) must be trusted
(or verified) not to have faults (including security faults) to preserve
availability.

e No trust hierarchy: the same guarantees can be given to multiple mutually
distrusting applications. Two independent applications can perform
monitoring tasks and compete for the communication channel to send out
alerts, and both of them will get the availability guarantees we discussed,
without either having to trust the other. It is in this sense that our
platform is truly an open system: progress and real-time guarantees can
be offered to a number of protected applications that run at the same
priority.

Considering the last guarantee, we note that equivalent guarantees can only
be given to competing applications up to an upper limit depending on the
nature of the resource. Intuitively, no realistic guarantee can be given if the
requirements exceed the available schedulability of the resource. This restriction
spans across all shared resources such as time (managed and guaranteed by
the scheduler), and attached peripherals (such as the temperature sensor and
communication interface drivers). We see it as a software responsibility of
each (trusted) resource driver to only provide a guarantee if this guarantee can
realistically be given.

In summary, these guarantees make it possible to ensure for our example
applications A and B that temperature alerts will be sent out within a hard
real-time bound in the presence of buggy or malicious code on the platform.
More specifically, the protected A is capable of achieving its goals even if B is
malicious and attempts to monopolize resources, and vice versa. In Section 2.5
we will show how this simple application can be realized on our platform with
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Figure 2.2: System overview with trusted components highlighted in green.
The scheduler has exclusive control over interrupts and can enforce a periodic
scheduling, but cannot access protected application enclaves directly.

the above availability guarantees. To the best of our knowledge, no other TEE
is capable of providing these combined security and availability guarantees.

2.3 Design

In the following we present the design of AION that, based on conventional
light-weight embedded TEE architectures, can bring strong temporal isolation
guarantees to multiple, mutually distrusting applications. We base our prototype
implementation on Sancus, but stress that the general design of AION is
independent of the underlying platform. Figure 2.2 shows an overview of
the AION system and its core components.

The first core component is the underlying hardware-based TEE architecture
that provides the core guarantees of confidentiality and integrity. In the following,
we focus only on TEE characteristics that are necessary in addition to the
established protection mechanisms, e.g., how interrupts or violations of the
TEE'’s security policy are handled. We are confident that these additions could
be implemented on top of all discussed light-weight embedded TEE architectures.
The second component of our design is a hardware-based exception engine



DESIGN 29

that is triggered whenever an interrupt or violation occurs. This exception
engine cannot only interrupt unprotected but also protected, i.e., enclaved,
applications. Furthermore, the exception engine is triggered on any violation
of a platform policy such as reading from protected memory or jumping into
the middle of a protected code region. The third and fourth elements of ATON
are an atomicity monitor and an enclaved scheduler. The hardware-based
atomicity monitor ensures that the enclaved scheduler is the only entity that
has full control over handling any system events, e.g. interrupts or violations.
For this, the atomicity monitor implements a notion of bounded atomicity and
carefully controls interrupt behavior during context switches, e.g., when entering
an enclave. The sofware-level enclaved scheduler is the handler of all events
on the system, and orchestrates the execution flow of the system when events
occur. All four components play together to enable the scheduler to issue fair
scheduling decisions. We will now detail these four core pillars of our design.

2.3.1 TEE Architecture

We build A1oN around TEEs that provide memory isolation for dynamic
enclaves. From the investigated TEEs, TyTAN [28] and Sancus [106], support
these requirements natively.

In addition, AION requires two additional features that need to exist to design
our security architecture. First, violations of the TEE security policy should
not result in a reset or in blocking the system. A system reset is a common
solution to violations since illegal writes or reads from protected memory
regions may only be detected after the offending instructions has completed.
If an architecture detects a security violation after it occurred, a system reset
prevents any malicious code to use the result or side effect of this access. In
A10N, however, the platform must not be impacted by any offending instruction
but instead proceed with an exception and hand control over to a handler of
this violation. It is crucial that offending instructions do not complete but are
instead either stopped or their effects rolled back before control is handed over
to a violation handler in constant time. As such, the handler of the violation
must not necessarily be privileged or trusted by any party.

Second, TEE-internal hardware operations must be interruptible. While we
discuss preempting enclaves in Section 2.3.2, some operations of the TEE
architecture may need a large amount of cycles to complete. Common examples
of such operations are cryptographic operations or the enabling or disabling of
enclaves. Adversaries in ATON are capable of arbitrary code execution and may
attempt to stall the system by issuing long-running cryptographic operations.
To prevent this, the TEE architecture must support the preemption of these
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operations. A successful or unsuccessful completion must be notified by the
hardware to the issuer of the operation when control is resumed so that benign
applications can restart the operation in case of an interrupt; the policy for this
must be part of the hardware-software contract to enable developers to design
enclaves that can make progress. Additionally, the hardware must ensure that
any cryptographic state is cleared and removed from memory before interrupts
are handled to prevent information leakage. We implement our prototype
of AION on Sancus which builds on MSP430 and has no cache or advanced
microarchitecture. Therefore, execution time is fully deterministic and only
depends on the instruction type and memory accesses. This simplifies our
approach but does not limit generality: AION can be implemented on any TEE-
platform for which a WCET-analysis is possible. Determining upper bounds for
the execution of scheduler operations is the only strict requirement for AION.

Also note that while remote attestation may on first glance not seem essential
to AION, attestation in AION provides remote stakeholders with the guarantee
that (i) the right code is loaded untampered in a protected application enclave;
(i) the scheduler enclave was loaded correctly, ensuring a fair availability policy;
and (i) expected implementations of shared drivers are used. We thus see
attestation as an integral part of how AION would be used in practice.

2.3.2 Exception Engine

Whenever an interrupt or a policy violation occurs, the exception engine in AION
is responsible for switching from the current job to the enclaved scheduler. This
ensures that the scheduler can always fairly schedule the next application and
ensure that all applications maintain a fair share of the resource CPU time. In
its operation, the exception engine distinguishes between two types of exceptions:
interrupts due to periodic or aperiodic events and wviolations of platform policies.
Figure 2.3 shows a high-level flow of the exception engine. Note that violations
are always handled immediately after the offending instruction completes but
the handling of interrupts is delayed by the platform-specific global interrupt-
enable flag. An immediate handling of violations ensures that even in atomic
sections, dangerous violations are immediately handled and the offending job
can be punished.

Handling interrupts On interrupts, the exception engine has to store the
current state of the running job in a way that execution can be resumed at a
later point. For this, the exception engine needs to distinguish whether the
current execution is of an unprotected application or whether an enclave is being
executed. For unprotected applications, the behavior of the exception engine



DESIGN 31

iolation ~ Exception _Interrupt
type?

Mark violation in
CPU state

No " Interrupts . Yes
enabled?

Push program counter
and platform-dependent
state registers to stack

Executing . No

enclave?

Yesl

Push CPU state to enclave
Mark enclave as interrupted

Clear CPU state

Y

Get exception handler

Pass control to handler

Figure 2.3: High-level flow of the exception engine. Two main paths are
distinguished: interrupts and violations. On interrupts, context state is saved
in the enclave. On violations, a marker is first set in the CPU state.

is the same as for regular platforms where usually only the current program
counter and potential state registers need to be saved on the program’s stack.
Since the running program is unprotected, the process of storing the program
state in the application’s memory region can be a responsibility of the scheduler
and be done in software.

For protected applications, however, i.e., enclaves, the exception engine needs
to store all context information of the running job in the enclave’s protected
memory. Depending on the implementation platform, the context information
usually entails all CPU registers. This process is done in hardware because
the enclaved scheduler should not have access to the protected memory of
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the interrupted enclave and can thus not perform this process in software.
After storing the context information in the enclave, all context information is
cleared before handing execution over to the enclaved scheduler. Since enclaves
can only ever be entered through predefined call gates, the enclave’s entry
routines must on their next execution, furthermore, also be able to detect
whether the enclave was interrupted previously. Thus, the exception engine
also leaves a marker for the enclave that it should restore its execution context
instead of accepting potential execution parameters that could overwrite a
currently running execution flow. The specifics of this marker can be left to
the implementation of AION, e.g., storing a single bit at a known location is
sufficient.

Handling violations In contrast to interrupts, violations do not occur during
the normal behavior of a platform but are usually the result of an unauthorized
attempt by an adversarial job. We consider two types of violations that are both
handled by the exception engine: security and availability violations. Security
violations are defined by the TEE architecture and revolve around the hardware
protections of the TEE such as protecting memory regions or preventing illegal
jumps into the middle of protected regions. Availability violations on the other
hand are introduced by the atomicity monitor and occur whenever a program
attempts to enter too long atomic periods or attempts to illegally prolong the
current atomic period. We explain the atomicity monitor and how it enforces
an upper bound on all atomic periods below.

For both types of violation, we can assume that they are not usually triggered
by a benign job and it can be assumed that if a job experiences one, it is
either controlled by the adversary, a victim of the adversary, or being tricked
by the adversary, e.g., to access another protected memory region through an
unchecked pointer [157]. Since the last example can be ruled out by proper
input vetting of enclave code, we design AION around the assumption that any
violation is the result of an adversary. To alleviate the impact this may have
on applications that do suffer a policy violation during benign behavior, we
additionally introduce a violation marker that is set on enclave violations in the
CPU context to inform the enclave that it recently suffered a violation. The
exact implementation is left to architecture specifics, but any available bit in a
status register suffices as long as it cannot be set by software.

Figure 2.3 shows the behavior of storing violations on the left side. After setting
the violation marker, the whole CPU state is stored as it would be for an
interrupt. On its next entry, the enclave can check that its last operation was
aborted due to a violation. However, if interrupts were not enabled at the time of
the violation, the exception engine does not perform this context save to ensure
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that it not accidentally overwrites an old interrupt context. This is needed since
attackers could otherwise call into enclaves and create an availability violation
at the cost of the called application.

If a violation occurs during the process of storing the CPU context, this process
is aborted and the exception engine jumps ahead to clearing the CPU state.
This ensures that the hardware cannot be tricked into performing memory
writes to areas that the current enclave is not privileged to access.

2.3.3 Atomicity Monitor

To prevent attackers from impacting the availability of the system, it is necessary
to block all attempts that completely disable interrupts. At the same time, the
enclaved scheduler in ATON is the main driver of the resource CPU time and
requires special privileges in regards to this resource. As such, the scheduler in
AION is the only entity that has the capabilities to disable interrupts on the
platform. Since the scheduler is crafted carefully, this privilege does not change
the availability guarantees of the system.

While denying any program aside from the scheduler the ability to disable
interrupts is beneficial to the availability guarantees of the system, it is certainly
not desirable to also prevent all benign usages of atomic sections. In addition to
functionality issues that may arise for shared resources if they are interrupted
in a critical state, there are also additional concerns in the context of enclaved
programs. During entry of an enclave, atomic sections are crucial to allow the
enclave to restore its interrupt context from memory before another interrupt
context can be written over the current one. To overcome this limitation, we
introduce a special clix instruction similar to the design of Masti et al. [97]
which starts a bounded atomic period. Figure 2.4 shows the use and several
edge cases of this clix instruction. When issuing a clix, the hardware disables
interrupts for exactly x cycles after which it automatically enables interrupts
again (Figure 2.4.a). Programs can choose x individually up to an upper bound
that is set by the platform designer depending on the deployed shared resources.
Any clix instruction that requests a number of cycles larger than the upper
bound and any attempt to nest clix periods trigger an atomicity violation
(Figure 2.4.b). We design atomicity violations to be handled by the exception
engine as described previously and assume that the atomicity monitor clears
all current state when experiencing a violation such as the current count of
remaining cycles left in the clix period. Issuing atomicity violations ensures
that attackers cannot perform clix instructions that are out of the bounds of the
system’s designers chosen acceptable worst-case latency between two interrupts.
It, furthermore, ensures that attackers can never prolong their granted atomic
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(a) Normal clix operation disables interrupts for x cycles
instruction —{_clix2 Inst 1 Inst 2 Inst 3
interrupts enabled
(b) Nested clix instructions result in an atomicity violation
instruction —{_clix10 Inst 1 clix 10 JATOM_VIOL
interrupts enabled

(c) Interrupts are disabled on enclave entries for several cycles
instruction —-{_iEntry Inst 1 Inst n Tnst ni 1

interrupts enabled

enclave entry

atomic entry period

(d) During the atomic section on enclave entries, a clix can be used
instruction —{_JjEntry Inst 1 clix 10 Inst 2

interrupts enabled

enclave entry

atomic entry period

(e) Attempting to prolong the atomic entry leads to a violation

instruction —_jEntry Inst 1 ] Entry  JATOM.VIOL

interrupts enabled

enclave entry

atomic entry period

Figure 2.4: Representation of the desired behavior of bounded atomic sections.
clix instructions temporarily disable interrupts but cannot be nested. On
enclave entry, a short atomic period is started which can be prolonged with a
clix.
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period without at least experiencing one cycle of enabled interrupts in which
an incoming event can be processed.

While the clix instruction technically allows to perform the critical part of
an enclave entry in an atomic section, adversaries could still issue an interrupt
right at the moment when an enclave is entered. This may lead to issues as an
existing interrupt context in the enclave could be overwritten by the adversary’s
interrupt with a new context that points to the start of the enclave entry. Such a
data loss and integrity violation is not acceptable. To prevent this, the atomicity
monitor additionally ensures that on each entry of an enclave, i.e., on each
context switch into a new protected region, interrupts are disabled for a very
limited amount of cycles as shown in Figure 2.4.c. This gives the enclave entry
code enough time to issue a clix instruction of the length it needs to restore
its interrupt context. Since the exact cycle duration that each application
needs to be interruptible again may vary, we allow applications to define this
cycle length via the clix instruction rather than automatically issuing a long
atomic period at each enclave entry. Furthermore, this dynamic clix length at
enclave entry allows each enclave to decide whether it wants to utilize several
cycles of hardware-guaranteed progress before the scheduler could preempt this
application again. For some applications, such a guaranteed immediate progress
may be more valuable than other progress longer after the deadline. As can be
seen in Figure 2.4.d, issuing a clix during the few cycles of an atomic entry
period terminates the atomic entry and seamlessly proceeds into a clix period.
However, any attempt to prolong this atomic entry is prevented with atomicity
violations (Figure 2.4.e).

Our atomicity design serves two main purposes: First, AION allows the use of
atomic sections while at the same time maintaining hard limits on the activation
latency of an arriving interrupt. Second, the length of issued atomic sections
are purely in the responsibility of software under the restriction enforced by
the hardware. This helps in the potential attestation of code that uses atomic
sections and increases the performance of benign applications that do not always
have to enter a long atomic period if this is not necessary.

A complete overview of the atomicity state machine can be seen in Figure A.1
in Appendix A.1.

2.3.4 Enclaved Scheduler

The previous core elements of AION have laid the foundation for a trusted
scheduler that is in full control of the shared resource CPU time. The exception
engine ensures that all state is cleared and control is handed over to the scheduler
on all interrupts and violations. The atomicity monitor limits the atomic periods
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of any job besides the scheduler itself. To enable a scheduler to utilize this
foundation and provide trusted scheduling, however, the scheduler must itself
also be protected by the TEE architecture and, hence, run inside an enclave.
This is crucial as the scheduler can only provide consistent and fair scheduling
decisions if it is unaffected by any attempts of the adversary and if control
is always deterministically returned to the same scheduler entry code. With
the combination of these properties, the enclaved scheduler can provide a fair
real-time scheduling of dynamic applications on an open system.

Practical implementations of AION benefit of a timer peripheral that is solely
controlled by the scheduler. This allows the scheduler to ensure fair scheduling
for configurable time periods and can also be used as a basis for a trusted time
service for applications.

2.4 Prototype Implementation

We implemented AION on top of the Sancus TEE and the RIOT operating
system, specifically Sancus 2.0 as presented by Noorman et al. [106] and RIOT in
major version 2019.10 which bases on the original work of Baccelli et al. [17, 18].
We chose this combination as Sancus is an open-source architecture based on the
16-bit TT MSP430, running at 8 MHz, and RIOT is equally available as open-
source and has support for MSP430 processors. Sancus already provides the
desired confidentiality and integrity guarantees. However, certain modifications
were still necessary, especially surrounding the additional requirements AION
makes on the TEE architecture (cf. Section 2.3.1). Furthermore, because RIOT
is designed to be a highly modular priority-based operating system, certain
adjustments were required to the scheduler and the way threads are handled to
implement an open system with this OS.

In the following we briefly describe Sancus and RIOT, and then discuss how we
adapt these systems to implement our solution. The full source code of ATON

and the modified toolchains of Sancus and RIOT are available as open-source?.

2.4.1 Background: Sancus and RIOT

The Sancus TEE Sancus [106, 107] is an open-source embedded TEE [96] with
a hardware-only TCB that extends the memory access logic and instruction set
of a low-cost, low-power openMSP430 [61] microcontroller. Sancus supports
multiple mutually distrusting software components that each consist of two

Shttps://github.com/sancus-tee/sancus-riot
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contiguous memory sections in a shared single-address-space. A hardware-
level program counter-based access control mechanism [135] enforces that an
enclave’s private data section can only be accessed by its corresponding code
section, which can only be entered through a single entry point. Sancus’s
generic memory isolation primitive can, furthermore, be used to provide secure
driver enclaves with exclusive ownership over MMIO peripheral devices that
are accessed through the address space. Since Sancus modules only feature a
single contiguous private data section, however, secure I/O on Sancus platforms
requires these small driver modules to be entirely written in assembly code,
using only registers for data storage [108].

Sancus also provides hardware-level authenticated encryption, key derivation,
and key storage functionality by extending the CPU with a cryptographic core.
This cryptographic core can be used to implement secure communication as
well as both local and remote attestation by employing a key hierarchy between
the infrastructure provider, the application developer, and individual enclaves.
Finally, Sancus comes with a dedicated C compiler that automates the process
of enclave creation and hides low-level concerns such as secure linking, private
call stack switching, and multiplexing user-defined entry functions through the
single physical entry point.

RIOT OS RIOT is an open-source operating system for the IoT, which puts
special emphasis on supporting real-time applications on resource-constrained
devices [17, 18]. In contrast to other embedded OS kernels, RIOT provides the
full set of features expected from an OS, ranging from hardware abstraction,
kernel capabilities, system libraries, to tooling.

RIOT is designed to be tickless, which means that the scheduler is not executed
at specific intervals but instead only when necessary. The standard RIOT model
is a cooperative scheduling model where it is assumed that applications actively
yield whenever they wish to pass control over to the next application. However,
to also support periodic events, RIOT allows jobs to set timers to sleep for a
period of time. For this, RIOT accesses the timer peripheral, tracks the passed
time of the system, and maintains a list of active timers and the thread they
are connected to. This setup is ideal for mixed-criticality systems as the highest
priority job will always be scheduled next and can run as long as necessary
until it either cooperatively yields to pass control over to the next job or until
an interrupt arrives and stops the job. For applications of the same priority,
however, RIOT assumes a fair and cooperative scheduling through yields which
places all other applications of the same priority within an application’s TCB.

The RIOT scheduler can provide scheduling decisions in constant time, i.e., in
O(1) due to its reliance on a bitmask that depends on the amount of configured
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priority levels. Sleeping is implemented in O(n) due to an unlimited amount of
possible timers.

2.4.2 Modifications to Sancus

We made multiple changes to the Sancus hardware to implement AION. All
of these changes are made under the assumption that a scheduler has a fixed
enclave hardware ID of 1, 7.e., the scheduler is the first enclave that is loaded.
Specifically, we (i) modified the exception engine to handle interrupts and
violations according to Section 2.3.2, (i) implemented an atomicity monitor
component according to Section 2.3.3, (i) placed restrictions on parts of the
status register to only be modified by the scheduler, and (4v) made cryptographic
operations interruptible (in an abandon-restart fashion).

All changes to the Sancus architecture are backwards-compatible with Sancus
2.0 [106] and the MSP430 specification. This was validated with the default tests
provided by the openMSP430 project that Sancus is based on and with new tests
for cases where we added functionality. To provide full backwards-compatibility
with the specification, our availability restrictions do not come into effect before
the first enclave, i.e., the scheduler, is initialized.

In the following, we focus only on the essential aspects of our implementation
that are not immediately derived from the design of AION as presented in
Section 2.3. Specifically, this applies to the exception engine, the status register,
and the cryptographic core.

Sancus exception engine Sancus 2.0 originally only supports the preemption
of non-enclave code. Thus, we extend the exception engine to perform the tasks
as outlined in Section 2.3.2. In our implementation, we utilize a configurable
location in the enclave data region to store the CPU context plus a violation
marker when receiving an interrupt or a violation respectively. The context-
saving hardware logic is subject to the same access-control checks as the
interrupted enclave, and any violations during the processing of an interrupt or
another violation lead to the abort of the context saving as shown in Figure 2.3.

In MSP430, an Interrupt Vector Table (IVT) at a fixed location in the memory
layout is used to determine the handler of an interrupt. In our implementation,
we assume that the scheduler registers itself for all interrupts and violations,
and then locks the IVT by wrapping it in the protected section of a small driver
enclave, thus preventing any further access to the IVT.
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Modified status register
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Figure 2.5: Overview of the status register and our changes. Bits highlighted
in blue (bits 3-7) are restricted to the scheduler. Bit 15 marks whether the
last interrupt occurred during an enclave. Bit 14 marks whether a violation
occurred.

Status register modifications The MSP430 status register contains multiple
flags e.g., for arithmetic operations and is stored on interrupts and restored
together with the program counter on a reti instruction. However, in addition
to these flags, the MSP430 status register also contains flags that are considered
sensitive in AION. Figure 2.5 shows an overview of the status register and our
modifications. Most obvious, we restrict the disabling of the Global Interrupt
Enable (GIE) bit to the scheduler. However, we allow the setting of this bit
at all times which allows applications to terminate their own clix or atomic
entry period ahead of schedule. Additionally, we also restrict bits 4 to 7 to the
scheduler which could be used to completely switch off the platform, such as the
CPUOFF flag, or which switch off the internal oscillator that is used as a timer.
Furthermore, we add two flags to the reserved portion of the status register
that are set by hardware and cannot be written from software: the IRQ flag (in
bit 15) and the violation flag (in bit 14). The violation flag in bit 14 is set by
the exception engine when it processes a violation and is the implementation of
the violation marker as described in Section 2.3.2.

The TRQ flag in contrast exists for purely functional reasons and helps the
scheduler to restore jobs as either unprotected code or as enclaves. Since by
default the scheduler has no reliable method of deducing whether the hardware
interrupted an enclave or unprotected code, the exception engine sets the IRQ
flag after clearing the CPU state and before handing control to the scheduler.

Cryptographic core Finally, we changed the behavior of Sancus’s cryptographic
instructions to update the Zero flag (bit 1) in the status register to indicate
whether the operation completed or was aborted due to an interrupt arrival.
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The resulting abandon-restart semantics is similar to how Intel SGX handles
long-latency cryptographic operations, such as einit [77, §40.3]. Specifically,
whenever an interrupt request arrives during a cryptographic operation, the
CPU resets the cryptographic core (without committing or leaking any internal
state), sets the zero flag, and updates the program counter before state saving
proceeds as usual via the exception engine. This behavior ensures that interrupt
response times cannot be delayed by long-standing cryptographic operations
(cf. requirements in Section 2.3.1). Interrupted cryptographic instructions can
be simply restarted later when they are followed by a conditional jump that
tests the zero flag.

2.4.3 Moaodifications to RIOT

In AION, we need to protect the scheduler and its associated data structures
from outside interferences. At the same time, it is desirable to provide a similar
functionality as the unmodified RIOT. Thus, we map the scheduler enclave over
the RIOT scheduler and incorporate core features of the RIOT timer. Since the
scheduler is executed on every interrupt already, we also grant it exclusive access
to the timer peripheral which we map into the protected memory region of the
scheduler. This allows scheduling decisions not only based on expiring timers
such as sleeping jobs, but it also allows other applications to use the scheduler
as a source for trusted system timings. It, furthermore, enables the scheduler to
be the only instance that monopolizes the shared resource of CPU time. In our
prototype, the scheduler disables interrupts during its execution and will never
interrupt itself. This increases the interrupt latency of our prototype and is
not strictly necessary to uphold the defined guarantees. With more engineering
effort, the scheduler could also be implemented to allow interrupts at carefully
selected parts of its execution paths.

As discussed above, a fair scheduling can only exist if the default state of the
system is schedulable. Any platform owner that accepts new application to
be deployed to the open system must check that the requirements of the new
application do not exceed the capabilities of the available shared resources. If
the shared resources are schedulable, however, the AION scheduler can enforce a
fair share for each deployed application. For the prototype, we limit the number
of maximum running or sleeping applications but allow the attacker to register
additional applications up to this limit.



EXPERIMENTAL EVALUATION 41

2.5 Experimental Evaluation

We evaluate AION in two steps. First, we present a case study implementing
the running example from Section 2.2.2. Then, we provide a cycle-accurate
performance evaluation for all operations impacting the real-time performance
of the hardware and the scheduler.

2.5.1 Case Study

We demonstrate the security and availability features of AION by implementing
the running example from Fig. 2.1. Our case study features three enclaved RIOT
jobs that all run with the highest priority. These jobs implement the application
enclaves A4 and B, and an I/O enclave Z. The latter provides an interface to
synchronously read the sensor and to asynchronously dispatch messages to a
serial line. The enclaves make use of Sancus’s TEE features [106], including
isolation guarantees and secure linking between A and Z, and B and Z; they
can further be remotely attested. All three enclaves schedule timer interrupts
to be woken up at regular intervals.

In Listings 2.1 and 2.2 we illustrate interesting aspects of our implementation.
A10N’s development toolchain is based on that of Sancus and currently supports
programming in C and assembly. We decided to present only the enclave entry
functions (as opposed to internal functions that can only be called from within
the same enclave) in Python-like pseudo code to reduce the complexity and
focus on important security and software engineering aspects that are enabled
by AI1ON. The C implementation of our case study is given in Appendix A.2
and as part of the open-source artifact.

1/0 job and APl Following Listing 2.1, Z provides three entry points:
sync_input returns a sensor reading; the code to operate the MMIO resource
— a few assembly instructions — reside in the internal function read_sensor.
The function first executes clix to ensure atomic execution of this operation.
Following our semantics of clix, it is up to the developer to guarantee that
sync_input completes with the end of the requested clix period. The execution
of the clix itself is protected by the atomic entry period. Similar to sync_input,
async_output is also an atomic function. But instead of performing the
I/0 operation immediately, the payload is buffered. The function may throw
an exception if no free buffer is available for the specific calling context and we
anticipate that Z would provide guaranteed buffers for a number of protected
jobs such as A and B, while other jobs would have to share buffers. In our
example, this decision is based on the Sancus get_caller_id primitive, which
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1def sync_input:
2 CLIX <cycles to complete>
3 return read_sensor ()

4
s def async_output(payload):

6 CLIX <cycles to complete>

7 try:

8 i = buf_free(get_caller_id())
9 if i != 0:

10 output_buf [i] = payload

11 except: fail

12

13def async_io_task:

14 while True:

15 for i in output_buf
16 output_buffer (i)

Listing 2.1: Pseudo-code of the I/O enclave Z of our case study.

1def worker:

2 while True:

3 t = sync_input ()

4 if (t > threshold):

5 async_output ("WARNING")
6 sleep(1ls)

Listing 2.2: Pseudo-code of the application enclaves A and B

allows Z to identify the calling enclave. We have hard-coded this for reasons of
simplicity and discuss a more general implementation in Section 2.6. Finally,
async_io_task is an interruptible function to output buffered payloads from
async_output. The implementation of output_buffer would again be atomic
to ensure non-interference during the I/O operation. Indeed, Z is free to
implement a wide range of policies for accepting and executing I/O operations.
A and B can attest Z to be ensured that they use an I/O implementation
suitable to implement their requirements.

Application jobs The application enclaves A and B can be implemented as
illustrated in Listing 2.2. A single function worker will use the functionality
provided by Z to acquire sensor readings, evaluate these readings, and, if
necessary, queue a warning message with Z. We assume that Z is programmed
such that our A and B are guaranteed a free I/O buffer once per second, thus
we do not handle the exception. Other applications, in particular code that
is not enclaved, may not enjoy these guarantees and therefore need to handle
the exception. The application then schedules a sleep of 1s and is guaranteed
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to be woken up by the scheduler when this time period is elapsed, plus the
scheduling margins summarized in Table 2.2. Note that our application does
not make use of clix and is therefore interruptible. Making the execution of A
and B entirely atomic is neither feasible (nested clix with Z are not allowed)
nor intended, as this would reduce the responsiveness of the overall system.
However, even if B would deviate from the behavior in listing Listing 2.2 by
performing a clix or causing a violation, this would not impact the security or
availability of A, which we discuss more comprehensively in Section 2.6.

Our case study shows that applications and drivers can be implemented such
that, even in the presence of an uncooperative or malicious application that
monopolizes system resources and maximizes delays, well-behaving protected
applications make progress with deterministic latencies.

2.5.2 Performance Evaluation

One core performance metric of AION implementations is the activation latency
of applications. This activation latency is the time from when an application
should be scheduled up to the time when control is actually passed over to it
and it can start executing. In the following we consider the best and worst-
case activation latencies for our prototype. An important characteristic of our
prototype implementation is that any operation that the scheduler performs
itself is atomic, i.e., interrupts are disabled during scheduler execution so that
the scheduler will not interrupt itself. In addition to regular scheduling, the
scheduler also offers multiple operations to applications that return back to the
caller or switch to another application. This means that activation latencies of
application may be delayed by currently running scheduler operations. We first
evaluate the performance of each scheduler operation in the best and worst-cases
and use the results from this evaluation to perform an in-depth analysis of the
activation latency of pending applications.

All timing overheads below are measured in CPU cycles and were retrieved
through repeated measurements with the prototype implementation in a cycle-
accurate simulation of ATION with Verilator [134]. Note that all performance
numbers depend on the implementation of the trusted scheduler and show
observed cycles only. Our prototype can only be seen as a baseline for real-world
performance, that could be improved substantially with additional development
effort.

Table 2.1 shows an overview over the timing overhead of all operations that
applications can request from the scheduler. All scheduler operations are
carefully designed to have a constant worst-case execution time. The remaining
differences between best and worst-case execution time mostly depend on the
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Table 2.1: Detailed overhead in observed cycles for the operations provided by
the scheduler.

Scheduler operation  Best case (cycles) worst-case (cycles)
Create job 688 860

Exit job 512 736

Sleep 1124 1320
Yield 424 628

Get time 212

amount of already scheduled or pending applications in the system. Since the
prototype implementation places a sensible upper bound on the number of
maximum running or sleeping applications, the worst-case execution times are
strictly bounded and cannot be extended by adversaries. The longest operation
that an adversary can attempt is to sleep while the maximum amount of other
applications are already sleeping, which means that the scheduler needs to insert
a new timer into a list of the maximum length. We observe a deterministic
overhead of 1320 cycles for this operation.

Building on these first evaluation numbers, we craft an attacker that (i) enters
an adversary-controlled enclave right before the victim deadline, (i) executes
a clix of the maximum length, and finally (7#) enters the scheduler with the
worst-case sleep operation before the clix expires. At the end of the triggered
scheduler operation, the scheduler will then detect the pending interrupt and
process that interrupt instead of returning back to the adversary or another
application. This represents the longest chain of events that an attacker can
craft before a periodic enclave is executed. Table 2.2 shows the best and worst-
case latencies that are possible for such an application deadline. In the absence
of an attacker (i.e., in the best case), interrupts are already enabled (i.e.,
GIE=1) when the application is to be woken up, and the exception engine can
process the interrupt immediately. In the presence of an attacker, however, the
attacker would perform the sequence of steps as described above in order to
delay the handling of the deadline. Since in our implementation, interrupts are
disabled during scheduler operations, this prolongs the time until an interrupt
is triggered by the time of the running operation. This bounds the worst-case
latency between an issued interrupt and its actual processing in the scheduler
by a maximum of 2330 cycles (10 cycles of atomic entry, 1000 of clix operation,
followed by the 1320 cycles of the worst-case sleep operation). Note that the
adversary does not benefit from creating a violation during the last cycles of
the clix instruction as a violation is also handled by the scheduler which can
check whether other interrupts are currently pending before resuming execution
of a job.
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Table 2.2: Detailed overhead for an event that preempts a running job. Shown
are measurements with default AION parameters and the overheads in the best
and worst-case. Values in parentheses show the worst-case in the absence of an
attacker and are zero for the crafted attacker scenario.

Task/Stage Best case (cycles) worst-case (cycles)
1. Interrupt arrival 0 10 + clix + 1320
2. Interrupt processing 7 (35)

3. Scheduler entry 157 (115)

4.1 Timer 1356 4075

4.2 Scheduler run 443 443

5 Scheduler resume 72 72
Activation latency 2035 5920 + clix

Processing the interrupt in hardware takes 7 cycles if an unprotected job is being
interrupted, while interrupting enclaved jobs takes 35 cycles. The overhead
stems from the additional work to store the CPU context in the enclave versus
only storing the program counter and status register on the unprotected job’s
stack. This overhead is reversed on entering the scheduler for unprotected
code (157 cycles) versus entering the scheduler after interrupting an enclave
(115 cycles). In the crafted attacker scenario, the scheduler can detect the
pending interrupt at the end of the running operation and before it would
resume execution to the next application. Thus, in the worst-case, steps 2 and
3 are skipped by the scheduler as it can start processing the interrupt without
needing to reenter itself.

In our prototype, processing a timer tick requires the processing of all software
timers to evaluate whether a software timer is ready to be fired. This means
that in the best case, no timer has to be processed, leading to a latency of 1356
cycles while in the worst-case, all 15 jobs currently have set a timer which leads
to a latency of 4075 cycles. Identifying the next job to schedule takes a static
duration of 443 cycles as periodic enclaves are always scheduled with the highest
priority on the system. Resuming from the scheduler then takes 72 cycles.

Overall, our prototype can guarantee an activation latency of 2035 cycles in the
best and 6920 cycles in the worst-case. This means that in the presence of an
active adversary that controls all 14 other threads besides the victim thread
and performs the sequence of steps as described above, our best-effort AION
prototype can guarantee that the first guaranteed application to be scheduled
is served at the latest 6920 cycles after its trigger occurred. We discuss below
what activation latency can be given to any application other than the first to
be scheduled if multiple applications received guarantees simultaneously.
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2.6 Discussion and Security Analysis

Confidentiality and integrity Firstly, our reliance on TEEs and enclaved
execution protects A and dependent code from a range of attacks on
confidentiality and integrity. TEEs and their limitations are well understood
in general [96] and for Sancus in particular [106]. For example, it is clear that
enclaved applications must be developed such that they are free of vulnerabilities
that allow an attacker to hijack the enclave’s control flow or to extract secrets.
The TCB reduction provided by TEEs helps to implement secure enclaves,
relying on extensive code reviews, testing, and formal verification, which are
orthogonal lines of research.

An important consideration to nuance the architectural confidentiality
guarantees offered by TEEs is information leakage through software-exploitable
side channels [57]. Fortunately, the class of light-weight embedded systems
considered by AION have a significantly reduced microarchitectural attack
surface in comparison to notoriously complex x86 processors. In particular,
known side-channel attacks on MSP430-Sancus platforms are mostly reduced
to classic start-to-end timing [63], as well as more fine-grained interrupt latency
timing attacks [158]. Side channels can generally be ruled out entirely by
manually rewriting the application code to adhere to established constant-time
programming best practices [57]. Alternatively, in the case of deterministic
execution platforms such as MSP430, static code balancing solutions can provide
an automated solution, either by transparently generating compensation code
in the compiler backend [170] or statically analyzing execution path timings at
the level of the generated assembly code [44, 117]. Finally, for the particularly
relevant problem of interrupt latency timing side channels [158], recent work
has proposed a provably secure, hardware-level padding defense for a simplified
version of Sancus [29]. We leave integration of such architectural changes to
further strengthen AION against side channels as future work.

Guaranteed availability Importantly, the activation latencies from Section 2.5.2
apply to A and B in our case study, even in the presence of strong software-level
attackers who are capable of manipulating all software that is outside of the TCB.
Specifically, we consider attackers that might attempt to (i) block the CPU by
performing extensive uninterruptible computations, (7) influence the scheduler
to disrupt the execution of (other) jobs, (%) block I/O resources through
continuous use, or (i) cause illegal memory access or atomicity violations.

First, considering attack (%), a misbehaving or malicious enclave can try and
prevent progress by using the clix instruction and potentially invoke a scheduler
operation. This is limited to a fixed number of cycles after which the scheduler
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will serve pending interrupts and schedule other jobs. In AION, clix and
scheduler operations are the only means by which an application can prevent
interruption. Importantly, clix periods cannot overlap to form continuous
uninterruptible sections.

Alternatively, in attack (i), the attacker could try and schedule many short
sleeps to maximize scheduling effort. We consider this attack in our evaluation
and show that it has a substantial but still deterministic impact on the available
CPU cycles for applications (cf. Section 2.5.2), and that the attack does not
impact the baseline guarantees. The attack can be prevented by a scheduling
policy where sleep requests below a certain threshold are not accepted, or where
a misbehaving job is terminated.

In attack scenario (ii), attackers try to continuously use an I/O resource. This
can be ruled out by implementing clix-based atomic interactions with 1/O
drivers, which are followed by a scheduler interaction. As we have illustrated
in our case study, it is feasible to program enclaved device drivers that either
synchronously or asynchronously serve application enclaves, where the entry
functions for applications have a bounded execution time and return within a
single clix. This prevents the attacker from continuously blocking a resource
and guarantees deterministic worst-case latencies for the next scheduling decision.
Sancus’s secure I/O functionality [106] can be used to guarantee that no code
other than the driver enclave has access to the memory addresses used to control
the peripheral, excluding non-driver code to interfere with the peripheral.

Finally, considering attack (iv), AION’s exception engine guarantees that all
interrupts, including violations of platform policies, are handled by the scheduler
and do not trigger a platform reset. The specifics under which jobs are
scheduled and how violations are handled are subject to the protected scheduler
implementation.

AION provides real-time guarantees based on a deterministic worst-case latency
that is followed by M cycles of progress. By means of specific scheduler
implementations, more elaborate policies can be provided, including the “at
least % of the CPU cycles per interval T”7-guarantee from Section 2.2.3. For
this, the scheduler must (a) allow at most N jobs with availability guarantees,
(b) implement round-robin scheduling among these N jobs, and (¢) run on a
platform where clix provides atomicity for M cycles. Then each of these NV
tasks is guaranteed to execute at least M CPU cycles (within a clix) of every
T = (5920 + M) + (1845 4+ M) « (N — 1) cycles. This is under the assumptions
that N — 1 jobs are under attacker control, all attacker jobs are placed before
the victim job in the round robin scheduling, and the attacker jobs all schedule a
timer to be woken up together with the victim. Furthermore, each attacker job
executes a maximum clix for M cycles, which ends in a scheduler invocation
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where the job schedules a timer for the next period. Thus, the first scheduled
job experiences the above calculated worst case delay while the scheduler will
only need to perform steps 1, 4.2, and 5 from Table 2.2 for the remaining jobs.
For our prototype implementation with 15 allowed jobs and a clix length of
1000, the absolute worst-case activation latency for the last-scheduled victim
job is 6920 + 2845 * 14 = 46750 cycles. This represents the absolute worst-case
where the platform developer decided to provide the same guarantees to 14
attacker jobs other than the victim job and it shows that our system can give
deterministic guarantees based on highly flexible platform configurations.

Using attestation Applications include dependent code in their TCB, e.g.
device drivers or the scheduler, and trust these for availability. The
trustworthiness of this code is to be established by validation techniques beyond
the scope of this paper. Remote attestation of the application enclave, together
with Sancus’s secure linking mechanism [106], give the deployer the guarantee
that the application is indeed executing on a platform with the intended
properties. For this, the scheduler and I/O drivers must be provided as enclaves
and implement scheduling and access policies in code, the identity of which
is then part of the attestation procedure. Enclaves can make use of mutual
attestation and rely on enclave IDs to identify each other and provide specific
guarantees, such as the availability of output buffers for A and B in the case
study.

Our case study illustrates these features in a rather static scenario and based
on fixed enclave IDs. To enable the open system that we describe in this
paper, where protected applications can be deployed at any time and without a
platform reset, applications and driver enclaves need to provide APIs that allow
an application to, e.g., request a guaranteed I/O buffer, and to communicate
success or failure to the deploying stakeholder after the initial attestation. This
allows the deployer to ascertain schedulability of a deployment.

The latter approach also enables the use of 1/O devices that require more
complex access policies and that cannot complete an I/O operation atomically.
For instance, a sensor might need to be calibrated for a specific use and multiple
applications may require different calibrations. We believe that the AION design
is flexible enough to integrate adequate access logic for such scenarios into driver
enclaves, yet our MSP430-Sancus platform, being a very light-weight 16-bit
processor, has limitations regarding the implementation size of application and
driver logic.

Summary, limitations, and future work As a result of our joint spatial and
temporal isolation, an application’s security is no longer impacted by faults
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in other applications. Specifically, vulnerabilities in B may lead to B being
compromised, and scheduling faults caused by B may lead to the termination
of B. But, these events do not affect the security and availability of A, and vice
versa. Importantly, AION does not impose a hierarchy of trust or criticality on
applications. We enable multiple mutually distrusting and non-collaborative
applications that operate at the same "priority" to execute under equally strong
security and availability guarantees.

We consider a hardware attacker with the ability to arbitrarily trigger external
interrupts to be out of scope for AION. However, a platform where the scheduler
is capable of temporarily masking these interrupts or disabling interrupts
completely, would be able to resist these attacks. We note however, that this
could compromise the trusted time guarantees of the scheduler if a timer tick is
missed.

A specific challenge of AION comes with the use of cryptographic operations
for attestation or secure communication, which may take many CPU cycles to
complete. Sancus [106] implements these operations in hardware for reasons
of security and performance. While AION makes cryptographic operations
interruptible, the state of the cryptographic engine is lost upon interruption
and the operation needs to be restarted entirely. Therefore, these operation
complicate timing analysis and may prevent applications from making progress
if they cannot complete a cryptographic operation within a clix. There are
several ways to address these issues, e.g. by making the crypto engine resumable,
tuning the semantics of clix to specific progress requirements, or relying on
cryptographic operations in software, which we will investigate in future work.

2.7 Conclusion

We presented AION, a configurable security architecture that can preserve
real-time availability guarantees for embedded systems even in the presence of
a strong software attacker. This set of guarantees is especially of interest for
open systems that execute arbitrary dynamically deployed code from multiple,
mutually distrusting stakeholders which all request their same fair access to
resources. AION is the first design for modern TEE architectures that provides a
strong notion of trusted scheduling, derived from preemption, bounded atomicity,
and an enclaved scheduler. We implemented and evaluated a prototype of A1ON
on a light-weight TEE and conclude that our system can deterministically
guarantee a worst-case latency of 6920 cycles until a protected job is scheduled.
This allows platform developers to derive more complex scheduling policies that
can enable a future class of truly open IoT systems.
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Extensions (SGX) enclaves. In prior work, Van Bulck et al. [157] presented
similar vulnerabilities in enclave shielding runtimes. Some of the issues in their
work were concerned with the x86 flags register, and they demonstrated that
these registers could even be used to extract enclave secrets. This work sheds
light on a different part of the x86 architecture: the complex landscape of
floating point calculations.

Initially, the x86 central processing unit (CPU) architecture was extended with
an x87 floating-point unit (FPU) that can accelerate integer and floating point
calculations. Later, single instruction multiple data (SIMD) instructions were
added that allow to perform multiple such calculations simultaneously with a
single instruction. For this, Intel added another processor extension to the legacy
x87 FPU, called the Streaming SIMD Extensions (SSE). Nowadays, extensions
like advanced vector extensions (AVX) build out this extended feature set even
more. Crucially, however, the old FPU features remain in the processor feature
list due to legacy reasons. And even in modern software such as the GNU
Compiler Collection [56], the legacy x87 FPU is still used to perform extended
precision math operations.

This complexity led us to investigate the status and control registers of these
extended feature sets and how they are sanitized on enclave entry. As a result,
our work leads to software fault injection attacks that purely require setting
FPU precision and rounding modes as well as exception masks to malicious
values before entering an enclave. Interestingly, Open Enclave, Enarx, and
Gramine (formerly Graphene) had initial mitigations against incorrect FPU
configurations before work in this contribution began. While their mitigations
prevented an attack of setting the precision or rounding mode to a malicious
value, specifically the mitigation applied by Open Enclave did not protect the
enclave from maliciously blocking floating point registers. This blocking leads
the FPU to silently return a NaN result, i.e., to notify that the calculation
failed and the result is not a number. In the case of enclaves, such a silent error
can be highly problematic, and we worked with Microsoft for Open Enclave
as well as with the Rust enclave development platform (EDP) developers to
perform a restoration of the full extended CPU feature set on enclave entry.
Such a full restore is more expensive in terms of computation time but is the
only stop-gap approach to ensure that no partial mitigations can be found
to be incomplete in the future. Overall, our contribution led to patches in
four different projects, namely the Intel SGX software development kit (SDK),
the Microsoft-maintained Open Enclave, the Rust compiler, and the research
runtime Go-TEE.

Together with the conference publication, our attacks were published as an
open-source artifact that was peer-reviewed and received the highest ACM
rating of “Artifacts Evaluated - Reusable v1.1”. Our artifact makes use of a
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Docker container that can reproduce the presented issues also on non-SGX
hardware by means of using the Intel SGX simulation mode, considerably
lowering the required effort to reproduce and for future research to extend our
artifact. Internally, this artifact has been used by a master’s student and has
proven to be useful for the issues described in Chapter 4. This paper’s and
artifact’s overall contribution subsequently received the “distinguished paper
with artifacts” award at the ACSAC 2020 conference. The award led to the
journal publication that is presented in this dissertation as part of a special
issue in the journal Digital Threats: Research and Practice. The extended
version of the paper that is also part of this dissertation below presents the
same FPU attack on the RISC-V-based Keystone architecture, which shows
that the underlying issues behind this attack vector are not constrained to a
single architecture.

After publication, this contribution has led to several follow-up works and a
master’s thesis. To further investigate the structure and issues arising from the
ABI layer in shielding runtimes, the master’s thesis analyzed the Intel SGX SDK
and discussed and proposed a unified ABI code [119]. We furthermore analyzed
the enclave shielding runtime landscape and how vulnerability mitigations
are applied across runtimes [153]. Fundamentally, this work also laid the
foundation for Pandora which we present in Chapter 4. As part of a wider
community outreach, we disseminated this work to the wider industry and
developer community by presenting it at the Remote Chaos Experience (RC3)
which was the online event for the Chaos Communication Congress 2020, and
at the 2nd Intel SGX Community Workshop hosted by Intel.

Lastly, an interesting development after the publication of this work has been an
advisory published by Intel in early 2022 [73]. This advisory, called the MXCSR
configuration dependent timing, refines our earlier established recommendation
from this work to set the MXCSR register to the value 0x1£80. The new
recommended value by this advisory is a value of 0x1fbf to prevent timing side
channels that result from setting exception bits. This progression from multiple
partial patches to a thus-far final advisory of a specific value highlights the
moving target nature of the seemingly straightforward issue of ABI sanitization.
The new advisory further underlines the complexity involved in sanitizing
extended processor feature sets when dealing with hardware-based isolation
mechanisms.
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3.1 Introduction

In recent years, several Trusted Execution Environments (TEEs) [96] have
been developed as a new security paradigm to provide a hardware-backed
approach of securing software. Their promise is that applications can be run in
so called enclaves to be isolated and protected from the surrounding, potentially
untrusted Operating System (OS). This allows for a radical reduction of the
size of the Trusted Computing Base (TCB) to the point where only the enclave
application itself and the underlying processor need to be trusted. TEEs hence
offer the compelling potential of securely offloading sensitive computations to
untrusted remote platforms [21, 70, 99]. However, the isolation guarantees
provided by any TEE only hold in so far as the trusted in-enclave software
properly scrutinizes the untrusted interface that is exposed to a potentially
hostile environment. Especially in the context of Intel SGX [40], a state-of-the-
art TEE widely available on recent Intel processors, the last years have seen a
considerable effort by academia and industry to develop shielding runtimes that
aid secure enclave development by transparently protecting application binaries
inside the TEE. Besides the canonical open-source SGX-SDK [78] reference
implementation by Intel, several other mature enclave runtimes have been
developed, including the Microsoft-maintained Open Enclave [101], Fortanix’s
Rust-EDP [53], Graphene-SGX [144], and SGX-LKL [118]. Similarly, shielding
runtimes have been developed for TEE architectures beside Intel’s SGX, such
as for the RISC-V based Keystone enclave [86] or OP-TEE [111] for ARM
TrustZone.

Attacks on enclave shielding runtimes. A recent systematic vulnerability
assessment [157] of enclave runtimes has shown that shielding requirements are
not sufficiently understood in today’s TEE runtimes. Particularly, it was shown
that popular SGX shielding systems suffered from a wide range of often subtle,
yet crucial interface sanitization oversights. From this analysis, we conclude
that the complex enclave shielding responsibility can be broken down into two
successive tiers of interface sanitizations, as illustrated in Figure 3.1. In the
first tier, immediately after entering the enclave protection domain, the trusted
runtime should sanitize low-level machine state and establish a trustworthy ABI.
This bootstrapping phase is typically implemented in a minimal assembly stub
that sets up a trusted stack and initializes selected CPU registers before calling
second-stage code written in a higher-level language. At this point, the trusted
shielding runtime is responsible for providing a secure Application Programming
Interface (API) abstraction by sanitizing untrusted arguments, such as pointers,
before finally handing over control to the shielded application binary written by
the enclave developer. Any sanitization oversight in either of the phases of the
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Figure 3.1: Enclaved application binaries are transparently shielded by sanitizing
untrusted ABI and API-level state.

trusted runtime, or in the application tier itself, may nullify all of the enclave’s
pursued security objectives.

This is especially apparent for a long line of confused-deputy enclave attacks [32,
80, 116, 157] that abuse untrusted pointer passing in the shared address
space to trick a victim enclave program into inadvertently dereferencing secure
memory locations chosen by the attacker. Such API-level pointer sanitization
vulnerabilities have been widely studied, both in the context of conventional
user-to-kernel exploits [34] and more recently in TEE scenarios [32, 80, 95, 116,
157]. However, as these vulnerabilities fully manifest at the programmer-visible
APT level, principled solutions have been developed to thwart this category
of pointer poisoning attacks, e.g., by means of developer annotations and
automatic code generation as in Intel’s edger8r [78], a secure type system
as in Fortanix’s Rust-EDP [53], or by automatically scrutinizing the enclave
APT through symbolic execution [80] and even formal interface verification
efforts [60, 165]. Furthermore, prior work exists to analyze enclave code via
symbolic execution in order to reason about API-level attack surfaces [35].
Another example of insufficient API-level sanitization is the lack of scrubbing in
uninitialized structure padding reported by Lee and Kim [88], causing leakage
of confidental data from enclave memory.

ABl-level attacks. We argue that ABI-level vulnerabilities, on the other hand,
are generally more subtle and harder to reason about as they do not manifest
at the program level, but instead exploit implicit assumptions made by the
compiler regarding the integrity of the low-level machine state, which may
not always hold in the enclave’s hostile environment. Due to their low-level
nature, this class of ABI-level vulnerabilities hence falls explicitly out of the
scope of established language-level security mechanisms like memory-safe type
systems. Prior work [48, 157] has for instance exploited improper stack pointer
initialization or insufficient sanitization of x86 flags to induce severe memory-
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safety issues in otherwise perfectly secure applications. It remains unclear,
however, whether other ABI-level attack surfaces exist, to what extent they
endanger the enclave protection model, and if they are limited to triggering
evident memory-safety misbehavior or could also induce more indirect and
stealthier errors in enclaved computations.

In this paper, we analyze a subtle and previously overlooked ABI-level attack
surface arising from enclave interactions with the processor’s underlying FPU
and SSE vector extensions. Specifically, we show that insufficient FPU and SSE
control register initialization at the enclave boundary allows to adversely impact
the integrity, and to a certain extent even the confidentiality, of enclaved floating-
point operations executing under the protection of a TEE. Our analysis of this
attack surface in popular Intel SGX shielding runtimes revealed re-occurring ABI-
level sanitization oversights in 5 different runtimes, including widely deployed
production-quality implementations such as Intel’s SGX-SDK [78], the Microsoft-
maintained Open Enclave [101], and Fortanix’s Rust-EDP [53].

Furthermore, an analysis of the ARM and RISC-V reduced instruction set
architectures shows that this attack surface is not limited to the notoriously
complex x86 instruction set architecture. Specifically, while the OP-TEE [111]
runtime for ARM TrustZone properly sanitizes the FPU, we were able to
reproduce the attack also in the Keystone runtime [86] on RISC-V. This lack
of secure FPU initialization allows unprivileged adversaries to influence the
rounding and possibly even the precision of enclaved floating-point operations,
introduce indefinite values, and mask or unmask selected floating-point exception
types. Interestingly, in contrast to prior research [48, 157] on ABI-level attacks
which induce direct memory corruptions in the victim program, uninitialized
FPU and SSE configuration registers pose a significantly less straightforward
threat and necessitate more insightful exploitation methodologies. Our work
therefore contributes novel attack techniques that abuse the adversary’s control
over FPU state from two complementary angles.

First, we explore the use of rounding and precision control poisoning as an “ABI-
level fault-injection” primitive to silently corrupt supposedly secure enclaved
floating-point operations. In several case studies that mainly focus on the widely
available Intel SGX TEE, we show that such subtle floating-point corruptions
can break the overall security objective of enclaved applications that operate as a
service in an untrusted cloud environment, without ever breaking confidentiality.
This threat is especially relevant for legacy applications that employ the x87 FPU,
which can be maliciously downgraded from 64-bit double-extended precision to
a mere 24-bit single precision mode. We illustrate that such attacks on the x87
FPU can lead to persistent misclassification in an exemplary enclaved image
recognition neural network, as well as subtle, yet visible quality-degradation
artifacts in 3D rendering algorithms. To the best of our knowledge, these
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case studies for the first time explore a new and stealthy class of integrity-
only attacks that purposefully disturb the end result of outsourced enclave
computations without ever breaching confidentiality, thus potentially defeating
even severely reduced “transparent enclave execution” paradigms [147]. This
perspective represents a notable change in direction compared to prior TEE
attack research, which has so far only focused on abusing enclaved execution
integrity flaws as a stepping stone to ultimately breach confidentiality, e.g.,
through memory-safety misbehavior [22, 87, 157], undervolting [104], or incorrect
transient-execution paths [33, 151, 154]. By contrast, our work shows that, even
when the processed data is not considered secret and the enclave binary is free
from any application-level vulnerabilities, current widely used shielding systems
cannot always safeguard the correctness of outsourced computation results.

Controlled-channel attacks. In a second and complementary angle, we explore
the impact of ABI poisoning on the confidentiality of enclaved floating-point
operations by showing that attacker-induced FPU or SSE exceptions can be
abused as an innovative new type of controlled-channel attack [173]. Using this
technique, we show that attackers can deterministically detect the occurrence
of x87 instructions in secret-dependent code paths and may even partially
reconstruct SSE operand values in straight-line code.

Specifically, in cases where an enclave multiplies a user-controlled input with a
secret learned parameter, such as the weights in a neural network, attackers
may partially reconstruct the secret multiplier by forcefully enabling floating-
point exceptions before entering the victim enclave and abusing the mere
occurrence or absence of a subsequent “denormal operand” exception for a
carefully chosen input as an unconventional side channel. This technique
is closely related to a powerful class of controlled-channel attacks that have
previously abused side-channel leakage from x86 CPU exception events to spy
on memory addresses accessed by a victim Intel SGX enclave through either
page faults [173], segmentation faults [68], or alignment-check exceptions [157].
Our ABI-level attacks, on the other hand, directly reconstruct full data operand
values for selected floating-point operations, and, hence, for the first time extend
the threat of controlled-channel attacks beyond leaking address-related metadata
for memory operations.

Our contributions. In summary, we make the following main contributions:

e A novel ABI-level fault-injection attack that allows unprivileged adversaries
to influence the precision, rounding, and exception behavior of x87 or SSE
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floating-point operations in at least five popular Intel SGX enclave shielding
runtimes and at least one RISC-V enclave shielding runtime.

¢ An innovative controlled channel that abuses floating-point exceptions to
recover enclaved multiplication operands, including a proof-of-concept of
weight extraction from enclaved neural networks.

e An exploration of a new class of quality-degradation attacks that stealthily
compromise the integrity of supposedly secure outsourced enclave computa-
tion results.

¢ A demonstration of practical FPU attacks in an end-to-end machine learning
case study enclave and a larger analysis of attacker-induced floating-point
errors on the SPEC suite.

Finally, we formulate recommendations for principled ABI sanitization and
we argue that this attack surface is non-trivial to patch. Specifically, our
analysis revealed insufficient FPU sanitization patches in two production-quality
runtimes [53, 101] that were explicitly aware of this attack surface. We show
that, despite the initial patches for these runtimes, it was still possible for
ABI-level unprivileged attackers to silently override the outcome of trusted
in-enclave x87 computations with indefinite NaN outcomes.

Responsible disclosure. The main security vulnerabilities exploited in this
work have been assigned CVE-2020-0561 by Intel, for the sanitization oversight
in the Intel SGX-SDK, and ¢vE-2020-15107 by Microsoft, for the remaining
attack surface after the initial mitigation attempt in Open Enclave. While the
initial mitigation attempt in Open Enclave served as inspiration for our work,
both the issue in the Intel SGX-SDK and the remediation of insufficient patches
were then responsibly disclosed through the proper channels for the affected
production runtimes. Intel, Microsoft, Fortanix, and Go-TEE acknowledged
the issue and applied our recommended patches in the enclave entry code for
the SGX-SDK v2.8, Open Enclave v0.10.0, and the Rust compiler v1.46.0,
respectively. We provide our case studies and proof-of-concept exploits as
open-source artifact for other researchers to independently evaluate and build
upon our findings'.

Ihttps://github.com/fritzalder/faulty-point-unit
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3.2 Background

This section introduces the necessary background on SGX enclaves and Intel
processor support for floating-point computations through the x87 FPU and
SSE vector extensions, respectively. We also briefly introduce the necessary
background for RISC-V and ARM-based TEEs.

3.2.1 Intel SGX

Intel Software Guard Extensions (SGX) [40, 77], are a set of hardware
instructions that allow to create trusted regions of code called enclaves that are
shielded from the surrounding, potentially untrusted Operating System (OS).
The SGX promise is that enclave applications can access almost all capabilities
of the user-mode x86 instruction set, while at the same time being provided
with strong hardware-backed memory isolation and the capability of attesting
code to remote parties. SGX protects enclave memory from outside access
and provides instructions to enter and exit enclave mode. When encountering
exceptions or interrupts during enclaved execution, the CPU securely saves
and scrubs the full extended register set inside the enclave, to be later restored
when the enclave is resumed. However on initial enclave entry into registered
call gates, named ecalls, the cleansing and sanitization of registers is the
responsibility of the software. Due to this challenge, multiple enclave shielding
runtimes (cf. Figure 3.1) have emerged that take over this sanitization on enclave
entry, bring the processor into a clean state, and then forward execution to the
intended application binary inside the enclave. This not only lowers application
developer effort to adopt enclaved execution but also streamlines the mitigation
of vulnerabilities on ABI-level. While a 64-bit operation is the norm for SGX
enclaves, a 32-bit compatibility mode is officially supported.

3.2.2 x87 FPU

The x87 FPU [77] provides an environment to perform floating-point and other
math operations. For this, the x87 FPU has eight 80-bit data registers that
are used internally as a register stack during computation of FPU instructions.
The 80 bits in the registers are designed to ensure a high precision inside
the FPU to minimize floating-point errors of data that is returned back from
the data registers to memory. With 1 bit used for the sign and 14 bits used
for the exponent, one 80-bit register utilizes 64 bits to store the significand
of a floating-point variable which Intel calls double-extended precision. The
internal data registers of the x87 FPU by default utilize the full 64 bits of
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Figure 3.2: Layout of the x87 FPU control word.

the significand during computations. In addition, the x87 FPU also contains
a control register that can be set with the FPU Control Word as shown in
Figure 3.2. This control register allows to specify two additional precision
formats, namely double precision with 53 bits used for the significand and single
precision with only 24 bits for the significand. These additional precision modes
enable compatibility with the IEEE Standard 754 and legacy programs or older
programming languages.

Besides limited precision, another important aspect of floating-point operations
is the rounding mode. Whenever a floating-point number cannot be represented
exactly with the given precision, the FPU needs to make a decision whether to
choose the next higher or next lower possible representation. By default the x87
FPU will round to the nearest value, but developers can choose to override this
in the control word and enforce rounding up, rounding down, or rounding toward
zero. Naturally, the impact of the rounding mode is greater for computations in
single-precision mode than for computations in double-extended precision as
rounding errors accumulate faster and the distance between two floating-point
numbers that can be represented with the given precision is larger.

Figure 3.2 shows those fields of the FPU control word that control the behavior
of FPU operations in red. These are the Precision Control (PC) bits 8 and 9,
and the Rounding Control (RC) bits 10 and 11. Fields that control the masking
of floating-point exceptions are shown in orange in the figure. Bits 0 to 5 can
be used to mask any of the 6 floating-point exceptions that may be triggered by
the x87 FPU. Notable examples of exceptions the FPU might encounter include
underflow when a result becomes subnormal, also referred to as “denormal”,
and overflow when the result can no longer be represented in the respective
floating-point type. Exceptions are masked by default, instructing the FPU to
continue with some safe default values. However, in case programmers want to
be notified about these events, individual exception types can be unmasked by
clearing the respective bits in the FPU control word, e.g., through the C library
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function feenableexcept (). When encountering an unmasked exception, the
FPU will stop operation and programmers can register a custom SIGFPE signal
handler through the OS. Lastly, the remaining non-relevant bits in the FPU
control word are marked gray. These are bits 6,7, and 13-15 which are reserved
and bit 12 which exists for compatibility reasons and is not meaningful anymore
for current versions of the x87 FPU.

Importantly, since the x87 FPU control word defines global program behavior,
it is expected by the ABI to be initialized to a predefined sane state 0x37f
that should be preserved across function calls, except for procedures that
have the explicit intention of globally changing the FPU configuration [52,
93]. Furthermore, on Intel processors supporting MMX technology [77], the
eight x87 floating-point registers can also be utilized as general-purpose MMX
vector registers. However, since the MMX registers are internally aliased to
the x87 FPU register stack, care should be taken when mixing MMX and x87
instructions. Specifically, any MMX instruction marks the entire x87 stack as
in-use and developers are required to issue a special emms instruction to clear
the register stack before executing any subsequent x87 operation. Failure to
do so may produce unexpected results, and compiler ABIs hence demand that
“the CPU shall be in x87 mode upon entry to a function” [93].

3.2.3 Streaming SIMD Extensions (SSE)

In order to further speed up floating-point arithmetics, recent Intel processors
include vector extensions that operate independently of the x87 FPU and
allow for high performance of parallelized calculations. The line of Streaming
SIMD Extensions (SSE) [77] supports parallel floating-point operations on
128-bit vector registers holding either four 32-bit single-precision or two 64-bit
extended-precision floating-point numbers. In contrast to the x87 FPU which
calculates intermediate results with 80 bits of precision, SSE processes a vector
of operands in parallel with a fixed (but lower) precision that cannot anymore
be dynamically degraded by the developer.
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Similar to the x87 control word, SSE offers a global MXCSR control register to
configure the rounding mode and exception behavior, as shown in Figure 3.3.
The SSE rounding control bits 13-14 (red) and floating-point exception mask
bits 7-12 (orange) work identical to those described earlier for the x87 FPU.
In addition, MXCSR provides status flags 0-5 (green) that indicate whether one
of the six floating-point exceptions occurred and configuration bits to specify
the behavior when encountering subnormal numbers and underflow conditions.
Specifically, bit 15 is called the Flush-To-Zero bit and can be used to enter
a mode that flushes the result to zero whenever an underflow is encountered
which slightly reduces precision of the calculations for the benefit of increased
performance. Bit 6 can be used to enter the Denormals-Are-Zeroes mode
that treats all subnormal numbers as zeroes. Neither of these two modes is
compatible with the IEEE Standard 754 and both of them are disabled by
default [77]. Again similar to the x87 control word, the configuration bits in the
global MXCSR register are expected by the ABI to be initialized to a predefined
state 0x3£80 and preserved across function calls [52, 93].

The performance gain of parallelized SSE vector floating-point operations is
leveraged by most modern compilers. For example gcc, the GNU Compiler
Collection, defaults to the SSE when compiling for 64-bit targets [56]. Similarly,
Microsoft Visual C++ defaults to the SSE for modern 64-bit applications [100].
For compatibility with 32-bit and legacy systems, both compilers also provide
options to compile applications without the SSE and with all math operations
purely executed by the x87 FPU. In gcc, this compiler option is called
-mfpmath=387. At the same time, the x87 FPU remains fully supported also
for modern 64-bit applications and default compilation options. One notable
example is the C data type long double which is defined as “at least as large
as the float type, and it may be larger” [56]. Some compilers as such aim to
use the maximum available precision for this data type, which means utilizing
the full 80-bit precision of the x87 FPU instead of the 64-bit precision provided
by the SSE. For example, gcc will default to x87 instructions whenever a long
double variable is involved and will regularly switch data between the FPU
and SSE data register stacks if the SSE was utilized by a support library such
as 1libm. Furthermore, gcc provides an experimental compilation option called
-mfpmath=both to utilize a combination of SSE and x87 FPU for increased
performance beyond just using it for long double variables [56]. Overall, the
x87 FPU, while not being the default compilation target for all platforms
anymore, is still relevant for calculations that require the high precision of long
double variables or for legacy applications.



BACKGROUND 63

3.2.4 Other Processor Architectures

In addition to x86, we also briefly discuss the handling of floating-point state on
two other mainstream architectures, namely ARM and RISC-V. Together with
x86 (and Intel SGX), these represent all widely used processor architectures for
implementing TEEs—ARM provides the TrustZone extensions, while RISC-V
is used in various research TEEs [19, 86, 168].

RISC-V RISC-V defines 32 registers for floating-point data [167, §11.1] and
a control and status register for floating-point operations, named the fcsr
register [167, §11.2]. This register contains two main pieces: frm which
globally controls the utilized rounding mode, and fflags which indicates the
accumulated floating-point exceptions since this register was last cleared.

Rounding modes in RISC-V are mainly controlled through three rm bits encoded
into each floating-point instruction. This allows to set the rounding mode on a
per-instruction basis if necessary. In accordance with the C99 standard however,
RISC-V also provides the global frm rounding mode setting in the fcsr register—
similar to the rounding mode settings in x87 and SSE. Instructions can either
specify their own rounding mode or specify the DYN rounding mode that defaults
to the global parameters in the frm setting. In general, this makes ABI-level
attacks possible also for RISC-V architectures. We demonstrate the potential
impact of this in Section 3.3.2.

Floating-point exceptions in the default RISC-V specification however do not
result in an abortion of the current execution flow as they are not handled by
an exception handler, also called trap handler in RISC-V [167, §11.2]. Instead,
floating-point exceptions are marked in the fflags register and detecting that
such an exception occurred is purely the responsibility of software. This means
that it is the software responsibility to check the fflags register after utilization
of the FPU and, importantly, also clear both the fcsr register and all data
registers that contain floating-point data. If an enclave does not clear the
fflags before returning control to the attacker, then the attacker can use the
state of these flags as a side channel similar to the controlled channel case study
we describe in Section 3.4 for Intel SGX. For example, with the default RISC-V
specification and a default compilation with gce, this side channel remains open
to an attacker.

When an enclave developer uses the gcc flags —-fp-trap=all, a check for floating-
point exceptions is added after each floating-point calculation and a trap inside
the enclave is executed. Even though the trap is not passed to the untrusted
code, an attacker might still be able to determine whether an exception has
occurred, e.g., from the timing behaviour or error messages. Note that the
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enclave shielding runtime also still needs to sanitize the fcsr and FPU registers
on every context switch to prevent the attacker from gaining information on
confidential computations inside the enclave.

ARM Similar to the x86 architecture, ARM exposes status and control
information through the ABI [13, §A1.5]. In 32-bit mode (AArch32), the
FPCSR combines status flags (e.g., zero, carry, etc.) and control flags (e.g.,
rounding mode) [14]. In 64-bit mode (AArch64), control and status information
have been split into two registers, FPSR and FPCR. In both cases, the rounding
mode can be configured in a similar way to x87 and SSE, and floating-point
exceptions can be masked through certain bits in the control register. While we
do not further consider ARM processors in the following, we note that the TEE
runtime OP-TEE for TrustZone appropriately handles the floating-point state
when switching between untrusted and trusted code?. Still, this fact highlights
that ABI-level attacks are a concern beyond Intel architectures.

3.3 Poisoning FPU State Registers

This section first elaborates on the assumed attacker capabilities and system
model. Thereafter, we analyze the different attack avenues that may arise in
case of insufficient ABI-level sanitization, and we provide a toy example that
illustrates their impact on the integrity of exemplary enclave computations.
Finally, we conclude with a systematic vulnerability assessment of this attack
surface across 7 widely used SGX shielding runtimes.

3.3.1 Attacker and System Model

We assume the standard Intel SGX threat model [40] where only the processor
and the software executing inside the enclave are to be trusted. Notably, while
Intel SGX explicitly excludes the OS from the trusted computing base and
aims to protect even against adversaries who have gained root access to the
target platform [159], we demonstrate our exploits with a considerably weaker
attacker model. Particularly, we only assume user-space code execution in the
untrusted host application so as to invoke the enclave with custom ABI-level
register settings and to optionally install signal handlers via the OS interface.
This falls within the capabilities of any unprivileged user who has access to the
enclave binary.

2https://github.com/0P-TEE/optee_os/blob/adb776/core/arch/arm/kernel/thread.
c#L1312


https://github.com/OP-TEE/optee_os/blob/adb776/core/arch/arm/kernel/thread.c#L1312
https://github.com/OP-TEE/optee_os/blob/adb776/core/arch/arm/kernel/thread.c#L1312
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Following widespread industry practice [21, 51, 53, 58, 78, 101, 118, 149], we
assume the use of a shielding runtime that intervenes on enclave entry and
exit to transparently protect the enclaved application binary from its untrusted
environment. Specifically, we consider the explicit security objective of the
shielding runtime to be to (7) make sure that an enclaved application behaves
exactly like on a trusted OS, and (i) prevent any avoidable information leakage
beyond what is allowed through explicit interaction with the application. As an
example of the first requirement, previous research has shown that the shielding
runtime should clear the direction flag in the x86 status register on enclave
entry to avoid unexpected memory corruption for string operations [157]. As
an example of the second requirement, runtimes should scrub low-level CPU
registers that do not form part of the calling convention before exiting the
enclave to avoid leaking intermediary state [157].

We assume that the Intel SGX TEE is properly patched against microarchitec-
tural vulnerabilities [33, 151, 154], such that the shielding system can provide
enclaved computation results to remote parties as if they were executed on a
trusted OS. In this respect, we consider it to be the objective of the shielding
runtime to transparently protect any ABI-compliant x86 application binary.
The latter can include legacy libraries and can be generated by an arbitrary
compiler, as long as ABI-level calling conventions [52] are respected, that can
hence make use of the full power of the x86 instruction set permitted inside SGX
enclaves. In some of our case studies, only when explicitly mentioned, we may
emphasize this point by instrumenting the compiler to make increased use of the
x87 FPU instead of more modern SSE features by means of the -mfpmath=387
gecc compiler flag. It should be stressed, however, that the resulting application
binaries remain fully legit ABI-compliant x86 code that may for instance also
have been generated by older or more specialized compilers [56].

3.3.2 ABI Poisoning Attacks

While trusted code can be relied on to respect ABI calling conventions [52,
93], this does not hold anymore for ecall functions exposed to the untrusted
world. The shielding runtime hence has the crucial responsibility to bridge this
trust semantics gap by sanitizing the ABI on enclave entry. Before showing
in Section 3.3.3 that this requirement is not sufficiently understood in today’s
widely used SGX shielding runtimes, we first elaborate below on what are the
exact security implications of insufficient initialization of x87 and SSE registers,
respectively.



66 __ FAULTY POINT UNIT: ABI POISONING ATTACKS ON TRUSTED EXECUTION ENVIRONMENTS

Poisoning x87 FPU state When the shielding system does not cleanse the
x87 control word, attackers may execute the unprivileged fldcw instruction
before entering the enclave to control all bits described in Section 3.2.2 and
Figure 3.2. In fact, executing this instruction at any point before entering the
enclave suffices to successfully implement the attack as long as the x87 control
word does not get modified in-between. Since programs rarely modify the x87
control word as long as they are not performing floating-point operations, the
attack may often be performed in advance instead of right before the actual
ecall. In the following, we assume however that the attacker loads the desired
x87 control word as the last instruction before switching into the enclave which
ensures that the x87 control register is in the desired state. The immediately
obvious impactful fields the attacker can target are bits 8-9 to degrade the
precision and bits 10-11 to alter the rounding mode for enclaved x87 floating-
point operations. We will show in Sections 3.5 and 3.6 that the impact of a
maliciously downgraded x87 precision can be especially devastating in larger
applications. Additionally, by selectively unmasking floating-point exceptions
and registering a signal handler, attackers may be informed of certain, possibly
secret-dependent, FPU events that would otherwise pass unnoticed.

Furthermore, when the shielding runtime does not explicitly initialize the x87
register stack, it may be incorrectly left in MMX mode. For this, it suffices
that the attacker executes any MMX operation that is not followed by an
emms instruction before entering the enclave. Since an ABI-compliant enclave
application expects the CPU to be in x87 mode with all registers available, any
following attempt to load data into an x87 register will cause an unexpected
FPU register stack overflow event, as the CPU still is incorrectly in MMX mode
with all eight floating-point registers marked as in-use. The exact behavior
in this case will depend on the corresponding exception mask bit in the FPU
control word. In the default case where exceptions are masked, the processor
will silently replace the intended x87 destination register with an indefinite
value (NaN) and continue execution. We experimentally confirmed that such
attacker-injected unintended NaN values are silently propagated further, which
is a clear violation of computational integrity and may further cause unexpected
or incorrect behavior depending on the victim application.

Alternatively, in the case where exception bits in the x87 control word are
craftily unmasked before enclave entry, the attacker will be notified by means
of an FPU exception signal whenever the enclave loads an x87 register. This
technique is somewhat similar to prior controlled-channel attacks on Intel SGX,
which have abused memory contention through page-fault exceptions [173] to
spy on enclave-private page accesses. Essentially, by adversely filling the FPU
register stack with MMX instructions before enclave entry, the attacker causes
unexpected contention that can be used as side channel to learn subsequent use
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of the FPU by the enclave. We experimentally verified that this technique can
be abused as an innovative controlled channel to deterministically recognize x87
instructions in a secret-dependent code path. We note that privileged attackers
could further improve the temporal resolution of this novel FPU controlled
channel by relying on the SGX-Step [159] enclave execution control framework
to exactly pinpoint on which instruction the exception has been raised. SGX-
Step leverages carefully scheduled timer device interrupts and has been shown
to deterministically advance production enclaves exactly one instruction at a
time [102, 159]. FPU poisoning adversaries can, hence, precisely establish the
relative instruction offset of enclaved x87 operations by merely counting the
number of SGX-Step interrupts before detecting the FPU exception signal.

We finally note that the above x87 FPU poisoning attacks can even impact
programs that were never explicitly compiled as x87 FPU programs. Section 3.2.3
indeed explained that some compilers, including gcc, still utilize the x87 FPU
in certain scenarios such as for long double data types.

Poisoning SSE state Compared to the x87 FPU, the more recent SSE floating-
point extensions include less configuration bits and hence also expose a smaller
ABl-level attack surface. However, we found that when the shielding system
does not sanitize the control bits in the MXCSR register, attackers may execute the
unprivileged 1dmxcsr instruction before entering the enclave to control all bits
described in Section 3.2.3 and Figure 3.3. Similar to the FPU attacks described
above, this allows the attacker to maliciously alter the in-enclave rounding mode
through bits 13-14 and to arbitrarily unmask floating-point exceptions through
bits 7-12. Unlike the x87 FPU, the precision of SSE floating-point operations is
fixed and can hence not be overridden by the attacker.

We demonstrate below that poisoning the SSE rounding mode may adversely
impact the integrity (i.e., the expected outcome) of certain in-enclave floating-
point computations. Section 3.4 furthermore introduces a case study which
exploits the adversary’s control over the denormal-operand SSE exception mask
as an innovative controlled channel to reconstruct secret in-enclave multiplication
operands.

A toy example We exemplify the threat of ABI-level poisoning attacks on the
integrity of enclaved floating-point computations by means of two types of math
operations: one complex operation that relies on the standard math library
included in the Intel SGX-SDK, and one example of a simple multiplication
of two floating-point numbers. The complex example is an approximation of
the number 7 by calculating arccos(-1) with the acosl function provided
by math.h and the second example is a calculation of 2.1%3.4. To achieve
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Table 3.1: Proof-of-concept attack executed inside an enclave.

FPU Rounding arccos(-1) =7 2.1 x 3.4 =7.14

To nearest 3.1415926535897932385128089 7.1399998664855957031250000
Downward 3.1415926535897932382959685 7.1399998664855957031250000
Upward 3.1415926535897932385128089 7.1400003433227539062500000
To zero 3.1415926535897932382959685 7.1399998664855957031250000

To nearest 3.1415926535897932385128089 7.1399999999999996802557689
Downward 3.1415926535897932382959685 7.1399999999999996802557689
Upward 3.1415926535897932385128089 7.1400000000000005684341886
To zero 3.1415926535897932382959685 7.1399999999999996802557689

To nearest 3.1415926535897932385128089 7.1400000000000001156713613

Single
precision

Double
precision

T g

gé Downward 3.1415926535897932382959685 7.1400000000000001152376805

5 % Upward 3.1415926535897932385128089 7.1400000000000001156713613
To zero 3.1415926535897932382959685 7.1400000000000001152376805

MMX Any -NaN -NaN

a maximum precision, the code utilizes variables of the long double type,
which the compiler translates to predominantly x87 FPU instructions. For
completeness, both the minimal C code and the resulting assembly instructions
can be viewed in Appendix B.1. The enclave was compiled with a recent gcc
v7.4.0 with standard compilation flags under Ubuntu 18.04.1 and with the Intel
SGX-SDK v2.7.1. All evaluations were performed on an Intel i5-1035G1.

Table 3.1 shows the attack in practice by listing the results of an executed
enclave with attacker-primed FPU registers before the ecall into the enclave.
For all depicted values, the FPU CW and the MXCSR were set to the desired
value via the fldcw and the 1dmxcsr instruction respectively right before the
enclave was entered. Illustrated are four FPU groups of possible attack modes
available to an ABI poisoning adversary, with the expected (unpoisoned) default
mode highlighted. In the first three FPU groups, the attacker sets the x87
FPU control word to operate in either single-precision, double-precision, or
extended-precision mode. These precision modes are then combined with each
of the four available rounding modes set in both the FPU control word and the
MXCSR register to affect the operation of the x87 FPU as well as SSE instructions.
The last FPU group targets the MMX mode by marking all x87 registers as
in-use, as described above, which always yields NaN independent of the rounding
mode. For readability, all computation results are listed with a precision of
10739 and cut off after the last digit.

As a first interesting observation, the results of the calculation of 7 listed in the
middle column remain unaffected by the choice of the x87 precision mode. Up
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to the order of 10719, the calculated approximation is identical with the actual
value of m across all possible x87 precision modes. Only the rounding mode
can degrade the precision of this single math library calculation in the order of
10719, Specifically, the rounding modes to nearest and upward both achieve the
baseline precision while the rounding modes downward and towards zero have a
degraded performance. This example shows that even when relying on standard
math libraries, the attacker can partly degrade the quality of calculations. At
the same time, it is evident that although the compiler relied on the x87 FPU
to satisfy the precision requirements of the long double data type, the results
remain unaffected by the modified precision mode. The reason for this is the fact
that the acosl library function is internally implemented using SSE instructions,
and hence the actual computation is not performed by the x87 FPU in this case.
Listing B.2 in Appendix B.1 shows that the compiler-generated code transfers
the x87 data into the SSE registers and similarly retrieves the data after acosl
has returned. In summary, the attack surface is somewhat limited whenever the
victim code utilizes library functions that are not compiled to x87 instructions.

The capabilities of an attacker that targets victim code which solely relies on
x87 calculations, however, can be seen in the right column of Table 3.1. The
right column of the table lists the results of the calculation 2.1 % 3.4 which is
performed without any external libraries and is, as such, by default compiled
into pure x87 instructions due to its long double data type. Notice that this
simple multiplication already experiences a floating-point representation error in
the highlighted base mode, which is an inherent consequence of limited-precision
numerical representations. However, the table clearly shows that ABI attackers
can significantly magnify the error with several orders of magnitude. While in
the default extended-precision mode, the error for our exemplary multiplication
lies in the order of 107!, this error increases to the order of 10716 in double-
precision mode and lastly to the order of 107 in single-precision mode. Observe
that for each precision mode, rounding upward yields the next higher floating-
point number that can be represented in the given precision, whereas the other
three rounding modes yield identical results for this particular example. It
is important to note that any successive calculation on the corrupted result
in larger applications would be exposed to an ever increasing floating-point
error. In this respect, our example also highlights a remarkable discrepancy:
while attentive enclave developers would aim to utilize the maximum available
precision and minimize the effects of inherent floating-point imprecisions, the
usage of the long double data type for this purpose also exposes the enclave
to increased attack surface for x87 ABI attackers.

The last row finally shows the impact of the MMX attack that always silently
replaces the expected outcome with an incorrect -NaN result. As discussed
previously, this error results from the x87 FPU not being able to determine a
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usable floating-point register on the register stack and aborting the calculation.

Poisoning RISC-V FPU state As mentioned in Section 3.2.4, similar to
SSE/x87, the RISC-V FPU has a global frm control of the rounding mode
for C99 compatibility. However, individual floating-point instructions can also
specify the preferred rounding mode. We verified that the Keystone [86] RISC-V
research TEE does not sanitize the state of frm on enclave entry. Furthermore,
the respective compiler (gcc 10.2.0) emits instructions (e.g., fmul.d) that respect
the global rounding mode for computations with double values. We developed
a proof-of-concept (using Keystone’s QEMU RISC-V emulation) that performs
the multiplication 2.1 % 3.4 inside a Keystone enclave. The untrusted host sets
different rounding modes as for x87/SSE. With this, we reproduced the results
of Table 3.1 (for “double precision” only).

Furthermore, Keystone also does not cleanse the fflags status bits that indicate
whether floating-point exceptions have been raised: the untrusted host can
clear the exception flags, run the enclave, and then test if any exceptions (e.g.,
underflow or overflow) were asserted due to the enclaved computations. Thus, if
the compiler does not explicitly check for and trap on floating-point exceptions
(the default for RISC-V gcc), this can be abused as controlled channel, cf.
Section 3.4.

3.3.3 TEE Runtime Vulnerability Assessment

In order to methodologically assess the prevalence of ABI-level FPU
poisoning attack surface in real-world SGX shielding runtimes, we performed
a comprehensive vulnerability assessment of the 7 open-source projects
summarized in Table 3.2. Our selection was motivated by a recent extensive
study [157] of popular Intel SGX shielding runtimes, which we extended with
two newer runtimes [51, 58] that were not analyzed before. Particularly, we
examined all predominant SGX shielding solutions in use by industry, namely
Intel’s SGX-SDK [78], Open Enclave [101], Fortanix’s Rust-EDP [53], and
RedHat’s Enarx [51], as well as three relevant runtimes that were, at least
initially, developed as research projects, namely Graphene-SGX [144], SGX-
LKL [118], and Go-TEE [58]. In addition, as a non-SGX example, we also
considered the RISC-V TEE Keystone [86]. This wide selection highlights
that our ABI-level vulnerabilities apply to both research and production code,
emerging safe languages like Rust and Go as well as traditional unsafe languages
like C or C++, and SDK-based secure function interfaces as well as library OS-
based system call shielding systems. Furthermore, the discovered vulnerabilities
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Table 3.2: Marked runtimes were demonstrated to not (%) or only partially
(#) sanitize FPU/SSE state, whereas empty symbols (O) indicate that the
runtime was not vulnerable at the time of our initial analysis (Nov 2019). When
applicable, applied and potentially remediated Patches are provided.

* \(&qe
o o ® A o° © e
%Ca%'% o™ Q{?’Q‘o %C;]‘» ?&5"@ GO’(Y@ oo x&e‘]‘i“o
Exploit * ¥ @) * * * @) *
Patch 1 xrstor Ildmxesxlfew fxrstor - ldmxesrlew xrstor xrstor —*F
Patch 2 xrstor xrstor

* Includes derived runtimes such as Apache Teaclave’s Rust SGX SDK [143] (formerly Baidu
Rust-SGX [165]) and Google’s Asylo [64].
** as of April 2021

are not unique to x86, but can also emerge in other CPU architectures like
RISC-V, albeit to a smaller extent due to the reduced amount of ABI state.

A first conclusion from Table 3.2 is that prior to October 2019, i.e., before
the initial Patch by Microsoft in Open Enclave, all 7 SGX runtimes were
originally vulnerable to the ABI poisoning attacks described in this work.
Indeed, our initial analysis was motivated by a partial ABI hardening patch
in Open Enclave in October 2019, which subsequently appears to have been
picked up by Graphene-SGX developers as well. For the remaining runtimes, we
then performed our initial analysis in November 2019 where we experimentally
demonstrated that the SGX-SDK, Rust-EDP, SGX-LKL, and Go-TEE all
similarly lacked any form of FPU or SSE register sanitization. We reported
these issues and in the case of the SGX-SDK, this can be tracked via CVE-
2020-0561/Intel-SA-00336, which also affects derived runtimes, such as Apache
Teaclave’s Rust SGX SDK [143] (formerly Baidu Rust-SGX [165]) and Google’s
Asylo [64], that build on top of the SGX-SDK.

A second tendency in Table 3.2 relates to the mitigation strategies applied
in the different runtimes. Particularly, following our recommendations for
more principled ABI sanitization, Intel responded to our disclosure by patching
the shielding runtime with an explicit xrstor instruction that fully initializes
the entire processor-extended state on every enclave entry. This is also the
mitigation applied by Enarx?® and Go-TEE. Note that SGX-LKL is depicted in
Table 3.2 as not to sanitize the FPU/SSE state because of their unmaintained
assembly entry code into the shielding enclave. However, SGX-LKL has been in

3Enarx is an ongoing project, still under active development, which is only included for
completeness here. The specific runtime entry sanitization code was committed in March
2020, in completion of a longer-standing documented issue.
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a migration process in order to utilize the code base of Open Enclave in favor
of self-written assembly stubs. As such, once SGX-LKL is fully migrated to
utilize Open Enclave, it will inherit the mitigations implemented there.

In response to our disclosure, Rust-EDP adopted the original mitigation strategy
of Open Enclave, which merely sanitizes the SSE configuration register and
the x87 control word through the 1dmxcsr and fldcw instructions respectively.
While this approach appears sufficient at first sight, and avoiding a full xrstor
may indeed be motivated from a performance perspective, we make the crucial
observation that fldcw does not clear the x87 register stack and hence cannot
protect the enclave against the MMX poisoning attack variants described above.
Specifically, we experimentally demonstrated that on the initially patched Rust-
EDP and Open Enclave runtimes, we can still forcibly put the processor in MMX
mode before entering the enclave and cause the outcome of trusted in-enclave
x87 FPU operations to be incorrectly replaced with NaN values, which are further
propagated silently and may cause application-specific misbehavior. Hence,
while the initial patches in these runtimes do severely reduce the attack surface
by cleansing MXCSR and the FPU control word, they fail to fully shield the enclave
application binary from our attacks. To fully rule out MMX attack variants as
well, the runtime should minimally execute an additional emms instruction to
place the FPU in the expected x87 mode. The mitigation implemented by the
Graphene developers who used an fxrstor instruction is sufficient to also rule
out this followup MMX attack as it cleanses all state related to the FPU, MMX,
XMM, and MXCSR registers. However, in light of our findings, we explicitly
recommend that shielding runtimes adopt the more principled and future-proof
strategy of cleansing the entire processor-extended state through xrstor on
every enclave entry. Both Open Enclave and Rust-EDP acknowledged the
remaining attack surface of an insufficient ldmxcsr/cw mitigation, and our
recommended full xrstor approach was integrated into their respective projects.
Microsoft additionally assigned this followup issue CVE-2020-15107.

Finally, we found and reported? the issue in Keystone in April 2021. As Keystone
is currently a research prototype and not used in production environments, we
included the vulnerability in this paper, even though a patch is not available yet.
We note that this issue may not be specific to Keystone only, as any alternative
enclave runtimes on RISC-V would have to properly sanitize the fcsr register as
well. Hence, similar to the situation in the Intel SGX landscape, any additional
(closed-source) RISC-V enclave runtimes [91] may be vulnerable to our attacks
as well.

4nttps://github. com/keystone-enclave/keystone-sdk/issues/72
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3.4 Case Study: Floating-point Exceptions as a Side
Channel

Background Apart from compromising computations, an adversary can also
use the FPU state registers to obtain side-channel information about floating-
point computations inside SGX enclaves. Notably, this side channel also applies
to floating-point operations carried out using the SSE extensions, i.e., with
standard compiler settings and without the special requirement to use the x87
FPU. The base for this side channel are the exception mask bits that can be
set in the MXCSR register right before entering the enclave and the fact that
an attacker can register a custom signal handler for floating-point exceptions
(SIGFPE). Crucially, for SGX enclaves, the signal handler is untrusted code.
This is similar to other controlled-channel attacks, e.g., attacks based on page
faults [173], segmentation faults [68], or alignment-check exceptions [157]. Note
that in contrast to user-space code, the exact reason for the exception (e.g.,
underflow or overflow) is not passed on to the signal handler when triggered from
within SGX. However, we show that this can be overcome by only unmasking
one exception at a time and executing the enclave multiple times with the same
input operands.

In this section, for the sake of simplicity, we focus on double operands,
i.e., the 8-byte IEEE 754 double-precision binary floating-point format [10].
In this case, the smallest normal number is n,,;, ~ 2.2250738585072014 -
1073% (hex 0x0010000000000000), while the largest subnormal is dpqe =
2.2250738585072009 - 1073%% (hex 0xO00FFFFFFFFFFFFF). Whenever the result
of a computation is < dj,qz, an underflow exception will be triggered. A similar
upper bound exists above 1,4, (~ 1.7976931348623157 - 103%%) where overflow
exceptions will be thrown. As described in the following, forcing the calculation
of a denormal number can be used as a side channel to infer one possibly secret
operand of an enclaved floating-point computation (in this particular example
a multiplication) if the other operand is attacker-controlled.

Attack scenario For simplicity, we first focus on a single multiplication of
two floats secret * input, but note that the method can be extended to
multiple such multiplications by recovering the secret operand one-by-one. We
subsequently also show how our technique can be used to partially recover the
weights of an in-enclave neural network implementation.

For our initial proof-of-concept, we created an ecall on Intel SGX-SDK v2.7.1
which multiplies a secret value with an input. The gcc compiler by defaults
generates the SSE instruction mulsd for the multiplication in Listing 3.1. Note
that the enclave API does not expose the internal result value to the attacker
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1void secret_mul (double input) {

2 double internal = secret * input;
3 // further computations on internal value
4}

Listing 3.1: Example enclave code vulnerable to secret extraction through a
floating-point exception side channel.

and we merely focus on the side-channel signal whether an exception was raised
or not.

Secret recovery To recover secret, in the first step, we determine if its
magnitude is < 1. This can be achieved by passing n,,;, as input: if an underflow
exception is raised, [secret| < 1, because the result of the multiplication is
less than n.,;,. In the following, we describe an attack for the case that
|secret| < 1, but we verified that a similar procedure can be used for the other
case where [secret| > 1 by leveraging the overflow exception (cf. Algorithm 2
in Appendix B.2). Next, knowing that |secret| < 1, we use binary search to
gradually approximate the secret. More precisely, the attack proceeds as in
Algorithm 1: the input is set to 0.5, and if no underflow occurred, the search
continues in the lower half [0,0.5] and otherwise in the upper half [0.5,1]. This
process is repeated until the difference between the upper and lower bound is
below an attacker-chosen minimal value epsilon.

Algorithm 1: Binary search algorithm to recover a secret value based on
underflow exceptions for operands < 1

Result: recovered secret

low = 0;

high = 1;

while abs(high - low) >= epsilon do

mid = (low + high) / 2;

secret__mul(mid);

recovered__secret = Nymin / mid;

if underflow exception raised then
‘ // continue search in upper half

low = mid;
else
‘ // continue search in lower half
high = mid;
end

end
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For our experiments, we set epsilon = 0.00001 - 1073%%, For this bound,
Algorithm 1 requires a fixed number of 1040 invocations of the ecall to recover
a secret operand. We ran this algorithm for 1000 random, uniformly distributed
secrets in the interval [0, 1], and computed the difference between the actual
and the recovered secret. The histogram of the error is shown in Figure 3.4.
The maximum observed error was 3.667689888908754 - 10—, with the average
error being 6.2648851729085662 - 10~ 7.

10712 10710 10-% 10-6
Error

Figure 3.4: Histogram over the error of the recovered secret for 1000 samples
(x-axis in log scale).

Neural network weight extraction Extending the previous example, we can
leverage this controlled channel to recover multiple enclaved multiplication
operands, for example, the weights of a simple neural network. Consider an
implementation where the weights of the network are secrets stored securely
inside an SGX enclave. The first layer of the network involves multiplying n
attacker-controlled inputs x; with secret floating-point weights w;, where f() is
the activation function and b is the bias, to compute an output z of the layer:

zzf(b-i-zn:ﬁi*wi)
i=1

We demonstrate the (partial) extraction of weights for two pre-trained feed-
forward neural networks, which both use a version of the Genann Neural
Networks Library [171] modified to run inside an SGX enclave. The enclave
code includes two simple networks—a network that replicates a binary AND
operation (cf. Figure 3.5) and a classifier based on the iris dataset [46]—with
slightly different topologies. The AND network has two inputs, a single hidden
layer with two nodes, and a single output node. The iris network has four
inputs, a single hidden layer with four nodes, and three outputs corresponding
to confidence in the three output classes.
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Figure 3.5: Structure of the AND network: the green weights are recoverable
via our attack, because they are connected to the inputs and there are only two
weights per input. Red weights cannot be recovered.

Separately, we developed a userspace program that collects user input,
instantiates the enclave, and (via the ecall interface) executes secure inference
on the network using the provided arguments. This program also registers
the floating-point exception handler and exits with a non-zero error code if a
floating-point exception is raised within the enclaved code.

An attacker can go input-by-input for the network and execute the binary search
procedure downwards (from an overflow state) and upwards (from an underflow
state). By monitoring for raised exceptions and scanning in the appropriate
direction, the threshold between “exception raised” and “valid calculation” again
leaks the hidden operand, i.e., the secret weight. Due to the nature of the
two exception sources (underflow and overflow), only the largest and smallest
weights can be recovered using this method, as the program exits as soon as
the first floating-point exception is raised on the largest or smallest weight,
respectively.

Special care must be taken for weights that are less < 1, because the underflow
binary search only converges on the nearest order of magnitude and not the
true value. The attack is able to adapt to this circumstance by re-running the
scan recursively with a lower bound that grows by powers of 10. Using this
method, the weights with largest and smallest magnitude in the input layer can
be reliably recovered. A proof-of-concept script that leverages the userspace
program to perform this attack is included in the paper artifact.

In the case of the AND network, the recovery of the largest and smallest weight
between each input and each of the two nodes in the first hidden layer is enough
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to recover all input weights, as depicted in Figure 3.5. However, in the case
of the iris network, each input is connected to four nodes in the hidden layer,
meaning that only eight of 16 input weights are recovered. It is worth noting
that even though the precise value of any unrecovered weights remains unknown,
it is known that they are all bounded by the largest and smallest weights.

Applicability to real-world models While stealing an entire network would
allow an adversary to perform unlimited inference, it might also allow them
to craft adversarial examples, e.g., in the context of spam filtering, or, via a
model inversion attack [55], recover training data such as private medical data.
Though we demonstrated our attack on a small feed-forward neural network,
any topology that directly (without normalization) connects input nodes to
hidden layers (such as Recurrent (RNN), Residual (ResNet) or Long Short
Term Memory (LTSM) networks) is vulnerable to this attack. Depending on
the complexity of the architecture, the min/max of each input weight may not
represent a sizeable percentage of the overall weights in the network though
this information could still reduce the task of duplicating or “stealing” a model.

Tramer, Zhang, Juels, Reiter, and Ristenpart [146], propose a so-called “equation-
solving attack” for learning the parameters (weights) of a neural network classifier
from API outputs, which include a class labels and confidence scores. As our
adversary has direct access to the network, however, there is no need to interact
via an API and the full output of the model can be obtained directly. Using
stochastic gradient decent and a number of queries equal to two times the
number of unknown parameters, Trameér, Zhang, Juels, Reiter, and Ristenpart
were able to produce a duplicate model which is over 99.8% accurate. By leaking
weights using our method, the number of unknowns could be reduced, which
would both reduce the time needed to resolve a model and help it converge
on a network that is more similar to the original. Alternatively, assuming the
architecture and hyperparameters of the model are known (or recoverable [163,
174]), it might be possible to train a new model on a similar set of input data
with the recovered weights locked, in effect a shallow form of transfer learning.

Limitations The attack has certain limitations. First, there is no way to recover
the bias weights, because these are not connected to inputs and thus cannot be
intentionally over or underflowed by providing chosen inputs. Therefore, even if
the activation function for a node can be ascertained, it is impossible to estimate
that node’s output without the bias’ contribution, which makes propagating
this attack deeper into the network difficult. Another issue is normalization: if
the inputs to the network are normalized in any way, it may be impossible to
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choose the proper inputs to cause overflow and/or underflow exceptions. Finally,
the sign of the weight is not recovered; only its magnitude is discovered.

In addition, the position of the recovered largest/smallest weight (in cases where
there are more than two per input) remains unknown. However, note that
for SGX, the enclave code can be single-stepped [159] which allows to exactly
pinpoint on which instruction an exception has been raised. This allows us to
determine at which position a recovered weight is located.

3.5 Case Study: Attacking Machine Learning
Predictions

Background and system model The core attributes of TEEs are ideally suited
for offloading sensitive computations into the cloud. With conventional systems,
a sensitive workload needed to either be self-hosted or entrusted to an external
cloud provider that is bound by contracts and confidentiality clauses. Both
solutions require extensive (legal) planning and are attributed with an increased
cost compared to the benefit of conventional cloud computing. When utilizing
TEEs on the other hand, a customer can place her sensitive computation inside
an enclave that is executed on the cloud provider’s premises. The TEE will
guarantee the confidentiality and integrity of the performed workload while the
cloud provider will do his due diligence to achieve a high availability of the
paid service to preserve his reputation. Additionally, customers that utilize the
service can be ensured that the cloud provider will not learn the potentially
confidential inputs or outputs.

Figure 3.6 illustrates such a TEE-based cloud computing service: A Machine
Learning as a Service (MLaaS) example of a model provider who gives paid
access to his model to customers. In this case study, we assume that the model
provider has spent enough resources on the training of the model to make a direct
access of customers to the model undesirable. The model provider is assumed
to train the model in a trusted setting and then pushes the trained model
directly into the enclave that provides the service to customers. Customers
then communicate with the enclave and perform evaluations and predictions
of their input without learning the machine learning model. Additionally, the
enclave can guarantee privacy such that neither the model provider nor the
cloud provider learn the customer’s input.

We assume that the cloud provider can behave maliciously as long as his actions
stay hidden from the model provider and the customer.
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Figure 3.6: MLaaS system model with enclaves.

Experimental evaluation We base our case study on earlier work from Alder et
al. [2] who placed the Duktape Javascript engine [150] in an Intel SGX enclave
and utilized it to provide Machine Learning with the ConvNetJS Javascript
library [79]. This setup allows to provide machine learning predictions from
Javascript code executed inside an Intel SGX enclave. We adjust this system to
prototype a simple service where a user requests evaluations of her input from
a machine learning model inside the enclave. As a platform for this service, we
utilize a standard exemplary convolutional neural network from the ConvNetJS
library that classifies images of handwritten digits from the MNIST dataset into
their machine counterpart of 0 to 9. We utilize the demo example to perform
the training of a neural network on a trusted machine outside of the enclave
and export the trained classifier to be used by our MLaaS enclave to classify
future inputs. Such a training step is equivalent to a model provider training
the neural network in a trusted environment, as it has not been subject to
ABI-level fault injection by our attack yet. With the exported neural network
and the ConvNetJS library, the enclave aims to evaluate customer inputs in a
trusted environment. Finally, we simulate the customer with repeated requests
with MNIST input digits to the enclave and measure the reported class and the
reported confidence of the neural network associated with each class. Again, we
perform the attack by modifying the FPU CW and the MXCSR directly before
entering the enclave. To showcase the potential worst-case impacts of our
attack, we consider two distinct scenarios with different victim enclave binaries
created using Intel SGX-SDK v2.7.1: one binary was generated with default
compilation flags and hence uses primarily SSE instructions, whereas the other
binary was generated by additionally passing the -mfpmath=387 compilation flag
to explicitly instruct gcc to use the x87 FPU for floating-point computations.

Table 3.3 shows the results of 100 input evaluations for all rounding modes when
using the SSE, or the x87 FPU in extended or single-precision mode. Evaluations
with the x87 double-precision mode are not shown as we found these results
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to be identical to runs with the x87 extended-precision mode. All depicted
configurations were executed on the same set of inputs to ensure repeatability.
For the highlighted baseline scenario, i.e., SSE and the default rounding mode
of rounding to the nearest value, the trained model expectedly predicts 100% of
the provided digits correctly. When adversely changing rounding modes through
the untrusted ABI, small errors in the order of 10716 are clearly introduced.
Importantly, however, the results indicate that such small perturbations are
insufficient to affect the predicted digit class and the model still holds the
same overall accuracy. This observation also holds for the x87 victim enclave
binary when utilizing the x87 FPU in extended-precision mode. However, when
ABI-level attackers maliciously reduce the FPU to a single-precision mode, the
x87 victim enclave binary can interestingly be coerced into one of two roles.
When rounding to nearest or rounding up, the trained model will simply have
a gravely decreased accuracy with only 4% of the given input classified with
the correct digit. Alternatively, when forced to round down or towards zero,
the trained model will predict every given input as the digit 2, regardless of
the actual input. The average error in single-precision mode lies in the range of
107!, which easily scrambles and rearranges the prediction percentages of each
input evaluation.

Discussion While the overall effectiveness of this attack was shown to heavily
depend on the way in which the enclave application was compiled, which may not
always be under the control of the attacker, the case study clearly highlights the
fallacy of the shielding runtime to protect an ABI-compliant enclaved application
binary from its untrusted environment. The results especially underline the
threat for larger legacy 32-bit [68] or specialized applications that heavily rely
on the x87 FPU, or even just require high precision via the long double data
type that might get compiled to utilize the x87 FPU. Our example MNIST
attack illustrates that, for certain enclaved application binaries, an ABI-level
adversary has the potential to inject faults that purposefully and stealthily
disrupt the overall security objective of the outsourced application, without
needing to break any confidentiality or availability guarantees. Furthermore,
this attack can stealthily target specific customers to allow a malicious cloud
provider to degrade the neural network performance for specific victims. Such
a degradation in performance may for instance allow the adversary to shift the
customer’s favor greatly towards a competing product or drive away customers
from the model provider while the adversary at the same time would have little
to no risk of being detected.
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3.6 Case Study: Spec Benchmarks

To evaluate the theoretical impact of our ABI-level fault-injection attacks on
larger and more varied applications, we perform a larger-scale synthetic attack
evaluation on the SPEC CPU 2017 benchmark programs outside of Intel SGX.
While it is not straightforwardly possible to run the SPEC benchmark programs
inside an SGX enclave, we argue that the induced faults into floating-point
computations are independent of the surrounding execution environment and a
common benchmark will help to better understand the possible impact of our
attacks on an objective baseline computation.

Experimental evaluation Our experimental setup runs outside Intel SGX and
compiles the SPEC suite twice with gcc v6.2.0, one time with default settings
and one time with an additional -mfpmath=387 flag to enforce the usage of the
x87 FPU for a maximum demonstration of the attack’s impact. We then run the
reference workload of the fprate class to generate meaningful evaluation results.
The fprate class of benchmarks is explicitly designed around floating-point
calculations and as such forms a relevant candidate to evaluate the impacts of
our attack. It is important to note that the SPEC benchmark evaluation scripts
already account for floating-point errors by allowing a workload-specific error
margin before a benchmark is marked as failed. Similar to the previous case
studies, we perform the attack by executing fldcw and ldmxcsr instructions
before executing the SPEC benchmarks. As such, the attacker performs the
same steps as when attacking enclave code as the execution of the SPEC
benchmark can be seen as equivalent to entering the enclave in this respect.

Table 3.4 shows the benchmarks in the fprate class and a marker indicating
whether the benchmark succeeded or failed for both the default SSE binary, as
well as for the x87 binary in single-precision mode. In the highlighted baseline
mode of to-nearest rounding with the SSE, all SPEC benchmarks succeed.
When maliciously changing the rounding mode before execution of the SPEC
benchmark, however, multiple tests already fail due to a too high accumulation
of floating-point errors. Furthermore, when considering a simulated maximum-
impact attack on an x87 binary in single-precision mode, the attacker can,
depending on the rounding mode, further degrade floating-point computations
and cause even more benchmarks to fail. Under this attack, only 4 benchmarks
in to-nearest rounding mode or one benchmark in to-zero rounding mode still
succeed.
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Figure 3.7: Composite image of the Blender benchmark in SPEC CPU 2017
under attack by our FPU attacker in x87 single precision mode when rounding
towards zero. Areas in red differ from the expected render image with the
zoomed-in area showing differences visible to the human eye.

Discussion To better understand the nature of the induced floating-point
errors, we performed an additional manual analysis of two benchmarks: the
526.blender__r image rendering benchmark and the 511.povray_r ray-tracing
benchmark.

526.blender_r image rendering Blender® is an open-source content creation
suite which includes the entire 3D production pipeline. The blender benchmark
in Spec 2017 renders a single frame of a scene from a short film.

While the blender benchmark is designed to be resilient against expected
floating-point perturbations that do not exceed the internal error threshold, we
found that the x87 binary in single-precision mode and with rounding towards
zero can lead to subtle-yet-visible quality degradations in the rendered 3D
images.

Figure 3.7 shows an example rendering with the difference between the expected
original and an attacked scene marked in shades of red. While most of the
scene is colored in a light shade of red that already stands for a small difference
between the expected and calculated output, some parts of the screenshot are
marked more clearly such as the framed mountain scenery or the hills to its left.

Shttps://www.blender.org/
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attack

Figure 3.8: Composite image of the Povray benchmark in SPEC CPU 2017.
The image shows a comparison of the baseline result to the result under attack
by our FPU attacker in x87 single precision mode when rounding up. The
zoomed-in areas highlight a region where the quality of calculated reflections
and raytracing has been visibly degraded. Image brightened for print version.

In the zoomed in portion of the framed scenery, it can be seen that the expected
baseline image (left) shows a tree shadow and snow cover on the mountains.
With the attack (right), however, the shadow is missing and the contours of the
mountains are lower, making the snow cover appear to float. It is evident that
the visual perturbations between the baseline and attacked rendering are small,
yet the fact that they are visible even for human observers clearly illustrates the
potential impact of insufficient ABI shielding on the integrity of an outsourced
enclave rendering service. If these perturbations are inserted into a each frame
of a sequence of images played back at multiple frames per second, the impact of
the degradation are even more noticeable due to irregularities between frames,
visible as a flickering effect. Such an attack may for instance be relevant when
an untrusted cloud rendering provider has an economic incentive to stealthily
degrade the quality of rendered images from a client or when an attacker aims
to stealthily insert quality degradation for monetary gain such as blackmail.

511.povray_r ray-tracing POV-Ray® is an open-source ray-tracing application
which renders 3D images. The povray benchmark of SPEC 2017 renders a

Shttp://www.povray.org/
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chess board with realistic reflections of other pieces and of the surrounding
environment, including lights. Figure 3.8 shows a comparison of the original
rendered image with default benchmark settings to the attacked scene under
influence of a single precision attacker that rounds upwards.

Under the influence of the attack, especially in the zoomed-in portion of the
benchmark, it is visible that multiple reflections and specular highlights are
non-existent or severely degraded. This is most evident for the chess pieces of
the king and queen, but is also visible for the middle part of the pawns. In all
these instances, the reflection and highlights are almost completely degraded
or lost, making this attack arguably more noticeable to the human eye than
the perturbations in the previous benchmark. Similar to the previous blender
benchmark, these perturbations will become more noticeable if they are part of
a sequence of images played back at a constant frame rate.

From the SPEC analysis, we conclude that common applications may widely
fail when unexpectedly interfaced with a malicious ABI and that attacker-
induced floating-point errors in larger applications may propagate into subtle
corruptions of the expected result. The exact impact of such attacks will always
be application-specific, however, and require careful analysis by the attacker
depending on the x87 or SSE processor features used in the victim application.

3.7 Conclusions and Lessons Learned

With the wide availability of SGX in mainstream Intel processors, an emerging
software ecosystem of enclave shielding runtimes has developed in recent years
to ease the adoption process and enable developers to largely transparently
enjoy SGX protection guarantees. But despite the considerable advances and
developer efforts behind these runtimes, API and ABI-level issues continue to
pose a threat to the promise of transparently shielding enclave applications [80,
157].

In this work, we presented novel ABI-level attacks on the largely overlooked x87
FPU and SSE state that allow an unprivileged adversary to impact the integrity
of enclaved floating-point operations, in terms of the rounding mode, precision,
and silently introduced NaN values. We furthermore explored an innovative
controlled-channel attack variant that abuses attacker-induced floating-point
exceptions to partially breach the confidentiality of otherwise private enclaved
floating-point operations. In a comprehensive analysis of this vulnerability space
in 7 popular Intel SGX runtimes, developed by both academia and industry,
we were able to provide a proof-of-concept attack for 5 of them. Moreover,
our analysis revealed that 2 previously patched production runtimes remained
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vulnerable to NaN injection, further highlighting the intricacy of fully mitigating
this ABI-level attack surface. While the eventual impact of our FPU poisoning
attacks remains intrinsically application-dependent, we have presented several
case studies that illustrate the potential exploitability in selected application
binaries.

The fundamental issue can be mitigated by simply setting the x87 FPU control
word as well as the SSE MXCSR register into known states when entering enclaved
execution. Mitigating the followup MMX issue requires an additional emms
instruction to place the FPU in the expected x87 mode. Regarding more
principled mitigation strategies however, we explicitly recommend that shielding
runtimes perform a full xrstor to initialize the complete processor-extended
state whenever the enclave is entered. Although this may come with a slightly
increased cost in performance, we believe that our findings underscore the need
for shielding runtimes to move away from selective register cleansing on an ad-
hoc case-by-case basis, in order to more systematically prevent any orthogonal
ABI-level issues that may arise in current or future processor extensions. Six of
the seven investigated enclave shielding runtimes have now opted to perform
such a full xrstor or in the case of Graphene perform an equivalent fxrstor
while SGX-LKL will inherit the xrstor mitigation from Open Enclave in the
future.

In the wider perspective, we were also able to reproduce the attack for the
Keystone TEE on RISC-V, despite its simpler architecture with a reduced
instruction set. Our work highlights the challenges of implementing a high-
assurance TEE on top of complex instruction set architectures like x86, with
arguably too many neglected legacy features and strict backwards compatibility.
Counterintuitively, however, our work also highlights that these challenges are
not unique to complex instruction set architectures, but that they remain even
when utilizing modern reduced instruction set architectures like RISC-V. In
the context of floating-point operations, this can be attributed to the C99
convention to treat the FPU state as global and controlled by a number of
functions—CPU designs that seek compatibility to C99 are likely to map this
into FPU state and control registers.

We argue that, in an era where the research community is increasingly looking
into subtle microarchitectural CPU vulnerabilities [33, 89, 151, 154], the strictly
architectural attack surface of today’s complex processor features remain not
sufficiently understood — even if the underlying architectures are using a reduced
instruction set. As such, an important avenue for future work is to further
extend and apply specialized symbolic execution tools, such as TeeRex [35] or
Guardian [12], to safeguard against ABI-level vulnerabilities in enclave runtimes.
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Pandora: Principled Symbolic
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“Pandora: Principled Symbolic Validation of Intel SGX Enclave Runtimes”.
In: In submission. 2023

Preamble

Earlier work by Van Bulck et al. and our contribution presented in Chapter 3 are
two examples that illustrate the complexity involved when protecting the enclave
interface with the untrusted world. Both works investigated major runtimes that
can benefit from large development teams and are often developed or maintained
by international companies. Still, as our earlier work on application binary
interface (ABI) shielding runtimes showed, the effort to keep only the small
assembly entry stub secure from all known vulnerabilities is immense. For the
investigated production runtimes in that work, this means that relative to the
size of the assembly stub, between over half (for the Rust enclave development
platform (EDP)) to over quadruple (for Gramine) lines of code of the assembly
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stub have been changed since the project started [153]. While unit tests can be
written when a vulnerability is mitigated to ensure that it is not reintroduced,
not all runtimes do this. Additionally, as the case of Open Enclave shows
that is discussed in this contribution, even if unit tests are used, there is no
guarantee that the tests cover all parts of the mitigated issues to ensure that a
vulnerability cannot be reintroduced.

Multiple approaches exist to validate that a piece of code contains no
vulnerabilities. Fuzzing is a popular dynamic analysis method that multiple
related works apply, also in the realm of Intel Software Guard Extensions
(SGX) [36, 45, 47, 62]. While full formal verification of a piece of code is another
area of research, in this contribution, we investigate the static analysis approach
of using symbolic execution.

Two prior works already worked on symbolic execution for Intel SGX:
TEErex [35] and Guardian [12]. While both approaches were important in
their contribution, neither is designed to find vulnerabilities within the enclave
shielding runtimes. Instead, both prior works specifically targeted applications
built on top of the Intel SGX software development kit (SDK) and abstracted
away many functions provided by this SDK.

In this contribution, we aim to fill this previously overlooked gap and seek to
automatically find vulnerabilities in the shielding runtimes themselves. Our
tool Pandora is built on the same basis that the earlier two works used, which
is the popular symbolic execution tool angr.! However, in contrast to the
earlier tools, Pandora can analyze binaries compiled with any enclave shielding
runtime and is fully SDK-agnostic. Our goal with Pandora is to provide a
research platform for future research that can build on and extend Pandora with
more vulnerability detection methods and expand its execution model. To aid
and ease this future development, we put considerable effort into the usability
and design of Pandora by not only providing a customizable and user-friendly
command-line user interface but also by providing clear user reports generated
in HTML and by following best practices in software development.

During working on this contribution, we have used Pandora to find 174
vulnerability instances across 10 runtimes, most of which are production
runtimes. At this time, several of the vulnerabilities reported in this dissertation
are still being mitigated and we are actively working with the respective vendors
to help validate ongoing patch efforts. As a result, some industry vendors have
already explicitly found the reports generated by Pandora helpful in pinpointing
and mitigating the found issues. Some vendors also indicated an interest in
integrating Pandora into their continuous integration and testing pipelines and
we plan on working with the vendors to realize this upon publication of Pandora.

Thttps://angr.io/


https://angr.io/

INTRODUCTION 91

4.1 Introduction

Recent years have seen the rise of trusted execution environments (TEEs) that
provide strong, hardware-rooted protection of small software components, called
enclaves, against hostile, possibly attacker-controlled system software. With
the release of the SGX [40, 98], included in selected Intel processors from 2015
onwards, TEE protection is readily available in today’s mainstream computing
platforms, and even more recent technology, like the Trust Domain Extensions
(TDX) [71] for upcoming Intel server processors, continues to rely critically on
SGX enclaves. Thus, the widespread availability of SGX has boosted ongoing
interest in enclave applications and limitations from both industry and academia.

While SGX hardware enforces that enclave memory cannot be accessed from
the outside, enclave software remains ultimately responsible to be bug-free and
should properly sanitize registers and pointer arguments in the shared address
space. This non-trivial requirement has given rise to a sizable ecosystem of
SGX shielding runtimes that support diverse enclave applications. Modern
SGX development paradigms nowadays include (%) custom C/C++ SDKs [78,
101] that directly expose a secure function call abstraction; (%) numerous
SGX-tailored library operating systems (libOSs) [16, 21, 118, 130, 149] to
support lift-and-shift protection of existing legacy applications; and (%) enclaved
memory-safe language runtimes [49, 51, 53, 58].

The popularity of Intel SGX has, furthermore, triggered a long and ongoing
line of attacks exploring limitations of this technology [105]. In this respect,
a clear trend has been that, while some of the earlier SGX attacks [33, 104,
121, 123, 151] could still be mitigated fully transparently at the hardware level
by means of CPU microcode patches, progressively more stringent demands
have been placed on enclave software behavior to mitigate evermore specific
vulnerabilities [5, 26, 33, 41, 73, 74, 76, 157] when interacting with the untrusted
environment. This has increasingly made secure enclave software development,
and especially the sanitization responsibilities for the numerous SGX shielding
runtimes, a moving target (cf. Section 4.2).

While software mitigations for transient-execution and side-channel attacks
have been widely studied for Intel SGX, and presently various compiler-
based solutions [27, 59, 69, 76, 84, 131, 154] exist, the crucial aspect of
validating the security of the enclave interface has received much less attention.
Researchers have only recently started to explore more systematic analyses
through fuzzing [36, 42, 112] or symbolic execution [12, 35, 80]. However, existing
approaches fall short in that they focus on validating enclave application logic
only, without considering vulnerabilities in the crucial shielding runtime, or even
being compatible with diverse runtimes beyond Intel’s SGX SDK. Furthermore,
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existing approaches focus mainly on detecting memory-safety issues, without
considering more subtle types of shielding responsibilities, such as untrusted
pointer alignments [26, 74] and CPU register sanitizations [5, 73, 157]. These
approaches, hence, are not fitted for the diverse and fast-changing SGX software
ecosystem, where a subtle sanitization oversight in a shielding runtime may be
the equivalent of a zero-day rootkit vulnerability in a commodity OS kernel.

To address these challenges, the main objective of our work is the development of
a principled, tool-supported approach to validate the security of enclave software
binaries using symbolic execution. We propose Pandora, an extensible, enclave-
aware symbolic execution tool that is built upon the popular angr framework
and extends it with several novel technical contributions. Particularly, we
accurately implement missing, SGX-specific x86 semantics, conceive a proficient,
enclave-aware symbolic memory model, and develop a generic enclave memory
extractor. Thus, Pandora for the first time enables truthful and runtime-agnostic
symbolic exploration of full enclave binaries, identical to the attested initial
memory layout and including the crucial shielding runtime itself. Furthermore,
to deal with the moving-target nature of secure enclave software development,
we propose pluggable vulnerability detectors, extending the notion of angr
breakpoints with SGX-specific memory-access and control-flow events that allow
rapid scripting of powerful Pandora plugins.

Our extensive experimental evaluation on 10 different shielding runtimes from
research and industry, with 4 plugins validating diverse sanitizations, highlights
the delicacy and complexity of present SGX software responsibilities. We
demonstrate the power of Pandora’s truthful symbolic execution semantics
by identifying several subtle vulnerabilities in commonly overlooked low-level
enclave initialization and relocation code that cannot be analyzed with state-
of-the-art enclave symbolic-execution tools. We, furthermore, are the first to
construct an automated tool for wide-scale validation of intricate untrusted
pointer-alignment software mitigations [74, 75] recently deployed throughout
the SGX ecosystem in response to APIC [26] attacks.

In the wider research landscape, we envision our open-source tool as a solid
foundation to enable future science on validating the security of enclaved
software, including low-level and fast-changing SGX software shielding runtimes.

Contributions In summary, our contributions are:

o We propose Pandora, an extensible, enclave-aware symbolic execution
framework for truthful and principled validation of SGX binaries.
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o Responding to the heterogeneity of the emerging SGX software landscape,
we propose a universal enclave memory extractor and corresponding angr
loader.

¢ Responding to the volatile and elusive SGX software responsibilities, we
propose pluggable detectors for diverse vulnerabilities, from validating
CPU register cleansing over untrusted pointer sanitization and alignment
constraints to control-flow transitions.

e In an extensive experimental evaluation on 10 different SGX runtimes,
Pandora autonomously confirmed 69 known and 174 new vulnerable code
locations.

Disclosure and Artifacts We responsibly disclosed all findings to the respective
vendors (tracked via 7 CVEs), providing them with comprehensive reports from
our tool. We, furthermore, included recommendations for software mitigations
and assisted in validating the applied fixes, which has uncovered remaining
issues in at least one runtime.

In the spirit of open science, we provide a comprehensive open-source artifact?
(to be released upon conclusion of submission) with self-contained HTML reports
of all vulnerabilities from Table 4.2, multiple runtimes to test out Pandora,
and documentation of how to reproduce our results. We will also include the
binaries of all analyzed shielding runtime versions (where allowed by licensing)
to provide a representative public data set of vulnerable enclaves that can serve
as a baseline for future research.

4.2 Background and Related Work

Enclave Shielding Due to its strong attacker model, enclave software faces
several additional security challenges compared to traditional user-space software.
In current practice, these additional challenges are primarily handled by
a shielding runtime that transparently intervenes on interactions with the
untrusted environment, as shown in Fig. 4.1.

Intel SGX enclaves are embedded as a contiguous virtual address region within
an untrusted, surrounding host application. As in-enclave software is allowed to
freely dereference outside memory locations, the host application can efficiently
communicate through the enclave’s application programming interface (API)
by passing pointers to arguments and return values in the shared virtual

2https://github.com/pandora-tee
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Figure 4.1: A shielding runtime transparently protects enclave applications by
(1) cleansing CPU registers upon entry or exit events; (2) finalizing the initial
memory layout, including any in-enclave relocations, upon first entry; and (3)
sanitizing pointer arguments before handing control over to the application,
which can call back via trusted standard library functions.

address space. However, this also opens the door to an especially powerful
class of confused-deputy attacks, necessitating that the enclave shielding
runtime adequately sanitizes any attacker-provided API pointers prior to
dereference. Despite this requirement being well-known and the availability
of automated methods—such as the edger8r tool to automatically generate
interface sanitization code from developer annotations in the Intel SGX-SDK [78]
and Open Enclave [101], or the Rust type system leveraged in EDP [53]—a
continuous stream of vulnerabilities [12, 35, 36, 80, 157] has proven SGX pointer
sanitization vulnerabilities to be particularly elusive and widespread in practice.
As an example, Listing 4.1 illustrates how adequately sanitizing an elementary
pointer-to-pointer argument can be non-trivial in practice.

Moreover, in response to the recently disclosed EPIC [26] and related memory-
mapped I/O (MMIO) [74] stale data vulnerabilities in Intel processors, enclave
software requirements for sanitizing untrusted pointer arguments have been
considerably complicated. That is, not only does enclave software nowadays
need to ensure that attacker-provided pointers properly fall entirely outside the
protected enclave range, but any subsequent pointer dereferences also need to
proceed at a certain alignment and size or need to be preceded and followed
by fragile x86 instruction sequences to cleanse microarchitectural buffers and
stall the CPU pipeline. These successive refinements of software responsibilities
hence necessitated extensive and ongoing changes throughout the heterogeneous
SGX software ecosystem.

A parallel moving-target evolution can be observed at the level of the ABI.
An initial comprehensive study [157] has shown that secure initialization was
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void encl_get_from_addr (struct user_arg *op) {
assert (is_outside_enclave (op, sizeof (xop)));
// Copy op->addr to avoid TOCTOU attacks
volatile void* ptr = (void*) op->addr;
assert (is_outside_enclave ((void*) ptr, 8));
use(ptr); // Dereference op->addr

}

Listing 4.1: Example of API sanitization: lines 2 to 5 enforce that all attacker-
controlled pointers lie outside the enclave prior to dereference.

widely overlooked for certain crucial CPU configuration flags, such as the x86
direction flag that may introduce memory-safety violations in otherwise secure
code. Similar issues have since been shown for stack-pointer initialization
in SGX enclave exception handlers [41] and for x87 and SSE floating-point
configuration registers [5]. The latter was most recently refined once again in an
Intel advisory [73] with additional SSE sanitizations to protect against certain
operand-dependent floating-point instruction timing channels in otherwise
constant-time code. A recent overview study [153] has documented how these
ABI vulnerability disclosures necessitated several rounds of widespread patches
throughout popular SGX shielding runtimes.

Symbolic Execution Symbolic execution [81] statically interprets a program
using symbolic inputs (i.e., mathematical terms) and collects constraints (i.e.,
mathematical formulas over these terms) encoding programs paths. These
constraints can be solved with an SMT solver to generate concrete inputs
exercising the path or check security assertions. Its ability to systematically
explore program paths and generate concrete inputs has made symbolic execution
a tool of choice for intensive testing [62] and vulnerability analysis [31]. More
recently, researchers have also started to apply symbolic execution to the specific
context of Intel SGX enclaves [12, 35, 80]. We provide an extensive comparison
of Pandora to these existing tools in Section 4.3.1. Some works [33, 175] have,
furthermore, focused on detecting microarchitectural side-channel vulnerabilities
in enclave applications using symbolic execution, but their goal is orthogonal to
our scope of validating shielding responsibilities.

Fuzzing A well-known, complementary approach to static analysis via symbolic
execution is dynamic concrete execution via fuzz testing. An orthogonal and
concurrent line of work [36, 42, 47] has started to explore such fuzzing for
Intel SGX enclave applications. Compared to symbolic execution, fuzzing can
more easily scale to complex code bases by quickly generating test cases and
may find bugs with fewer false positives. However, unlike symbolic execution,
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fuzzing cannot provide any guarantees about the absence of bugs and requires
carefully crafted test cases to trigger non-superficial application logic. Hence,
in line with existing surveys [20, 132], we regard fuzzing-based approaches as
complementary to symbolic validation.

4.3 Problem Statement and Overview

The combination of a varied and evolving Intel SGX runtime ecosystem with the
frequent discovery of new attack techniques that necessitate additional software
sanitizations makes the problem of principled enclave software validation
particularly challenging and, indeed, largely unexplored for the fundamental
shielding runtimes themselves. Therefore, we set the following goals:

G1 Truthful symbolic exploration. Enclave-aware symbolic execution should
closely mimic the real SGX hardware. Particularly, to not miss
vulnerabilities in the runtime itself, the symbolic exploration should (a)
start from the very first entry instruction without skipping initialization
procedures or stubbing runtime library functions; and (b) operate on the
ezact initial memory contents, as remotely attested via MRENCLAVE [11],
while accurately detecting and symbolizing any subsequent accesses to
untrusted or unmeasured memory.

G2 Runtime-agnostic. Validation should not be limited to enclaves developed
with any specific single shielding runtime. The heterogeneous SGX
ecosystem with ill-documented and varying enclave binary formats calls
for a lightweight conversion approach to a unified format capturing the
exact enclave memory layout.

G3 Extensible validation policies. The system should support prompt
reactions to evolving sanitization responsibilities by adding new or modified
vulnerability detection plugins. This calls for an approach that decouples
validation policies from enclave-aware symbolic execution mechanisms,
such that plugins can solely focus on elegantly expressing the required
software security invariants to be validated for explored paths.

G4 Accessibility. The tool should be open-source and easy to use, including
on closed-source binary targets. Reports should be easily interpretable by
human analysts.

4.3.1 Research Gap

Initially, SGX software vulnerability research was mainly guided through manual
code review [5, 41, 153, 157], whereas automated enclave analysis through
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Table 4.1: Comparison of symbolic-execution tools for SGX.

Runtime S QA Plugins
-\0‘2”0&0 S
Tool App SDK Entry Init © QE Ptr ABI APIC Jmp Open

TEEREX [35] @ Intel O O e O © ©0 O O © O
Guardian [12] @ Intel @ O © O O ©o © O © o
COIN [80] @ Intel O O O O O © O O O e
Pandora ® any () e o o o e o () () ()

Features can be fully (@), partially (@), or not (O) supported. Columns 4-7 denote whether the
tool executes the runtime entry and initialization phases; can handle binaries without additional
specification; and uses the exact memory layout (dump).

symbolic execution has only more recently started to be explored [12, 35,
80]. Table 4.1 compares Pandora to these existing tools. In summary, existing
approaches are mostly focused on application bug detection instead of principled
validation of the absence of shielding runtime vulnerabilities. This means that
they are inherently insufficient for truthful symbolic exploration (G1), as the
focus is on analyzing enclave application logic only, while (largely) skipping
the underlying shielding runtime and operating on inaccurate initial memory
contents. Moreover, existing tools are ill-fitted for the diverse SGX ecosystem
(G2), as they all make runtime-specific assumptions that strictly limit them to
enclaves developed with Intel’s SGX SDK only. Finally, existing tools focus
mainly on a narrow set of classical memory-safety issues for pointers without
principally supporting more intricate shielding responsibilities (G3), such as
recently rolled out pointer-alignment APIC mitigations [26, 74].

TEERex TEEREX [35] is a closed-source prototype to detect memory
corruption vulnerabilities in enclave applications developed with the Intel
SGX SDK. Similarly to our work, TEEREX is based on angr [132], a popular
symbolic execution tool for binary code, and performs taint tracking of untrusted
attacker arguments and memory accesses outside the enclave using unconstrained
symbolic values.

In contrast to Pandora, however, TEEREX does not support truthful symbolic
exploration (Gla), as it entirely skips analysis of the whole trusted runtime
and directly performs symbolic execution of enclave application entry points,
called ecalls. Moreover, TEEREX is inherently runtime-specific (vs. G2), as it
relies on Intel SGX SDK-specifics to identify addresses of ecall functions, to
hook specific pointer validation functions, and to set up an approximate, non-
truthful initial memory layout (vs. G1b). With regard to vulnerability detection
(G3), TEEREX only reports unconstrained and NULL-pointer dereferences and
cannot detect more subtle pointer issues, or ABI and APIC issues. Particularly,
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by hooking the crucial validation functions (e.g., is_outside_enclave in
Listing 4.1), TEEREX may miss logical partial validation errors [157] that will
be caught by Pandora’s precise enclave-aware memory model (cf. Section 4.7).
Lastly, TEEREX is not openly available for independent usage, study, and
reproduction (vs. G4).

Guardian Guardian [12] is similarly based on angr and can partially check API
and ABI shielding policies. Regarding truthful exploration (Gla), Guardian is
the only prior work that starts at the enclave entry point within the trusted
runtime, but it nevertheless skips the complex enclave initialization phase,
which may still contain critical vulnerabilities (cf. Section 4.7). Furthermore,
similar to TEEREX, Guardian is constrained to binaries developed with specific
versions of the Intel SGX SDK (vs. G2) and only constructs an approximate,
non-truthful initial memory layout (vs. G1b). As to vulnerability detection (G3),
Guardian validates a principled, yet fundamentally incomplete orderliness policy,
where the developer is required to manually annotate execution phases (vs. G4).
Guardian validates that, after the entry phase, an (incomplete) blocklist of ABI
configuration registers has been cleared, and that untrusted memory outside
the enclave is only accessible during execution of the shielding runtime, but
not during the application phase. This simplified permission state-machine
model may be overly conservative for applications and, more problematically,
remains inherently insufficient to detect critical vulnerabilities (e.g., CVE-2018-
3626 [157]) in the shielding runtime itself, as the latter is allowed unrestricted
access to the full address space.

COIN COIN [80] uses concolic execution to find memory-safety vulnerabilities
in enclave applications. COIN specifically targets applications developed on top
of the Intel SGX SDK only (vs. G2) and requires the enclave source code (vs.
G4) for extracting the parameters of ecalls in order to set up an approximate,
non-truthful initial state (vs. G1b). Regarding vulnerability detection (G3),
COIN is largely orthogonal to our work by focusing on traditional memory-safety
application vulnerabilities instead of nuanced, enclave-specific shielding issues
and skipping analysis of the runtime itself (vs. Gla).

4.3.2 Solution Overview

Figure 4.2 depicts a high-level overview of the Pandora software architecture,
which we implemented in 5,934 lines of extensible Python code (as measured
by sloccount). At Pandora’s core, the engine component in the middle-right
interacts with the underlying symbolic execution library angr [164]. This engine
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Figure 4.2: Overview of the Pandora architecture.

augments angr with accurate SGX semantics and drives the enclave-aware
truthful symbolic exploration (G1), shown on the top right and described in
Section 4.4. The engine is primed with the exact initial enclave image via a
novel, runtime-agnostic dynamic memory extraction phase (G2) depicted on
the left of the figure and detailed in Section 4.5. As such, Pandora is the first
symbolic-execution tool that can find vulnerabilities before the application is
even executed, i.e., by not only executing the runtime entry procedures, but
also the complete low-level enclave initialization phase.

While symbolically executing a binary, the Pandora engine may trigger
vulnerability-detection plugins (G3), shown on the bottom left and described in
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Section 4.6, based on subscribable events exposed by the SGX-aware exploration.
After a completed run, Pandora bundles the findings of each plugin and
formats them into convenient and interactive HTML reports (G4), shown
in Appendix C.1, including severity levels, descriptions, disassembly, register
dumps, and full basic-block backtraces to enable human analysts to readily
investigate the reported issues.

4.4 Enclave-Aware Symbolic Execution (G1)

4.4.1 Modeling x86 Instruction Semantics

The underlying VEX representation used by angr does not have a symbolic
model for many x86 instructions that commonly occur in enclave binaries. Most
prominently, the ENCLU user leaf instructions [77] are used inside the enclave to
perform architectural tasks, such as creating a local attestation report (EREPORT),
generating cryptographic keys (EGETKEY), or exiting the enclave (EEXIT). While
prior work faced similar angr limitations and either did not execute [35] or merely
hooked and skipped [12] over these instructions, Pandora truthfully emulates
used enclave instructions as closely as possible. For example, in EREPORT, we
copy the relevant SGX enclave control structure (SECS) fields provided by the
enclave loader, including the processor extended features request mask, into
the generated report structure. When specific fields are not available and no
sane defaults can be provided, values are symbolized to ensure that all possible
paths are explored.

Furthermore, in response to advanced ABI attacks [5, 73], instructions like
XSAVE and XRSTOR or their variants are commonly used to save and restore
extended x86 register on enclave context switches. In contrast to prior work [12,
35], Pandora does not skip over these instructions, but carefully emulates their
behavior as closely as possible. Where necessary, we add dedicated shadow
registers to keep track of special x86 registers, such as MXCSR, which are not
normally part of angr’s execution model. As shown in Section 4.7, this precise
register view enables Pandora plugins to accurately uncover subtle oversights,
e.g., attacker-controlled registers when switching to enclave functions or insecure
MXCSR configuration values.

4.4.2 Taint Tracking of Attacker Inputs

In order to accurately deal with attacker-controlled inputs, Pandora comes
with a capable symbolic taint-tracking mechanism. Specifically, initial register
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contents on enclave entry, as well as memory reads from outside the enclave
or from uninitialized unmeasured pages inside the enclave (cf. Section 4.4.3),
are transparently replaced with unconstrained symbolic values. Thus, the
symbolic execution initially makes no assumptions about attacker-provided
inputs, until specific constraints are added by any subsequent sanitizations
performed by the enclave code. Pandora, furthermore, uses angr’s annotation
system to mark attacker-controlled symbolic values with an attacker-taint, which
is conservatively propagated during symbolic execution and can be conveniently
queried by plugins. For instance, plugins can check that values are properly
sanitized (e.g., Section 4.6.1) or react differently based on whether a value is
attacker-tainted or not (e.g., Section 4.6.2).

Note that Pandora’s taint tracking mechanism only tracks direct data flows.
That is, any indirect flows resulting from attacker-controlled control flow are
ignored, as they are arguably less critical and may severely over-approximate
taints, which would lead to abundant false positives.

4.4.3 Enclave-Aware Memory Model

Pandora features a fully enclave-aware memory model that truthfully simulates
the enclave address space in a more accurate and expressive way than prior
work, while also including reasonable performance optimizations. Particularly,
we are the first to realize a precise, runtime-agnostic enclave memory model
that properly recognizes attacker-controlled symbolic addresses and sizes and
that takes into account novel attack surface from unmeasured SGX enclave

pages.

Address-Space Partitioning

At its core, we implemented our enclave-aware memory model as an angr
MemoryMixin extension that performs rigorous checks on every memory access.
Particularly, we use angr’s constraint solver to unambiguously decide for every
accessed buffer with a possibly symbolic address and size whether it is restricted
to (i) lie fully inside the enclave; (i) lie fully outside the enclave; or (44) partially
touch the protected enclave range. Accesses to memory inside or outside the
enclave will be handled differently, as outline below. Pandora plugins can,
furthermore, subscribe to these respective events to check and report specific
vulnerabilities (cf. Section 4.6).

Note that the above accurate classification is non-trivial to implement, and
prior work side-stepped these intricacies by either hooking runtime-specific
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pointer-validation functions [35] or ignoring the (possibly symbolic and attacker-
controlled) size of memory reads [12]. Our fully symbolic memory model, on the
other hand, allows to meticulously detect subtle oversights or logical errors in
the crucial validation functions themselves. For instance, Section 4.7 discusses
a particularly intricate finding where overflow protection logic was silently
optimized away by the compiler.

Untrusted Memory Accesses

For accesses falling outside the protected enclave range, we model the strongest
type of adversary that utilizes tools such as SGX-Step [159] to perform
instruction-granular time-of-check time-of-use (TOCTOU) attacks. For example,
an enclave checking an external pointer that resides in untrusted memory, before
accessing this pointer again at a later time (as in Listing 4.1) may realistically
receive two different values. Pandora truthfully simulates this by ignoring
untrusted memory writes and fully symbolizing all untrusted memory reads
with a fresh attacker-tainted symbolic value on every access.

Enclave Memory Accesses

In close accordance with the SGX specification [77], we distinguish two types of
memory inside the enclave: measured and unmeasured pages. Measured enclave
pages are attested as part of the MRENCLAVE enclave identity and are, hence,
always demonstrably initialized to the exact value provided by the enclave
loader. Unmeasured enclave pages, on the other hand, are protected from
enclave creation time onwards, but their initial content is not attested as part of
the MRENCLAVE enclave identity. These unmeasured enclave pages have many
uses in enclaves, for example to reserve heap memory or to load additional code
or data during execution that did not exist at enclave creation time yet. As the
initial value of these pages is not part of the enclave identity, and thus under
attacker control, enclave software must always securely overwrite these pages
before first use. However, to the best of our knowledge, to date no sanitizer
exists to validate this critical security property. To enable this with Pandora,
we ensure that any read from unmeasured enclave memory initially returns
an attacker-tainted symbolic value. Only when unmeasured bytes are securely
initialized, we create an angr memory backing and the newly written secure
values will be taken into account for future reads.

Pandora, furthermore, implements two types of safe performance optimizations.
First, we remove measured and initialized unmeasured enclave memory that
consists of all-zero bytes from the angr backend. Any reads from such regions
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will statically return zero bytes until they are overwritten with non-zero data.
Second, only for source and destination buffers that are constrained to fall
entirely inside the enclave, we optionally hook common memory-management
functions (memcpy and memset) and x86 rep string operations with custom
SimProcedures that eliminate loop overhead, while still taking care to trigger
any relevant angr mixins and breakpoints.

4.4.4 Enclave Entry and Reentry

During enclave lifetime, EEXIT and EENTER instructions can switch execution to
and from the untrusted environment. Prior work [12, 35, 80] relied on parsing
runtime-specific and fragile data structures to find out the supported ecalls in
order to skip the crucial runtime entry and/or initialization phases entirely and
immediately start executing at the respective application ecall function.

Enclave Entry

To truthfully execute entry into the enclave, we parse the actual thread control
structure (TCS) from enclave memory to retrieve the entry point location
and fill registers with the exact same values that they would receive from the
architecture, such as the TCS address and FS and GS base addresses. All
other registers are filled with unconstrained, attacker-tainted symbolic values
to initiate Pandora’s taint-tracking mechanism (cf. Section 4.4.2).

Enclave Exit

Pandora allows to truthfully build up enclave state by emulating a new EENTER
with the same accumulated memory view after a symbolic path reached the
EEXIT instruction. Hence, the enclave entry code in the runtime itself will
perform any necessary checks and autonomously decide whether the entry
request is an ecall or an ocall return and dispatch this request accordingly.
The strength of this approach is that subtle attack vectors, like dereferencing a
function pointer before in-enclave relocation (cf. Section 4.7) or returning from
an ocall where no prior ocall was executed [157], can in principle be detected.

4.4.5 Path Exploration and State Reduction

Pandora’s unique focus on truthful symbolic exploration of the entire enclave
binary, including low-level shielding runtime code, comes with the potential cost
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of state explosion. To reduce memory consumption for individual explorations,
Pandora optionally supports depth-first exploration in addition to breadth-first
exploration.

With regards to reentry, every path that reached EEXIT would have to be
reentered in a naive approach, because the enclave may have accumulated
relevant global state. However, we observed that many paths result in a clean
failure that is reported to the untrusted world with the request to restart the
enclave with correct parameters. To avoid exploring all of these semantically
equivalent traces in parallel, we implement a novel state uniqueness reduction
before reentering enclave exploration. That is, two symbolic EEXIT states are
different from each other only if they have made different changes to the internal
memory of the enclave. For example, two enclave traces that both result in
no changes to the enclave except setting a specific bit indicating that the
enclave failed, are equivalent and reentering both would be redundant. With
this uniqueness criterion, we thus remove all non-unique enclave traces before
preparing them for reentry. Note that this approach is a safe over-approximation,
e.g., states may still be semantically equivalent even though they differ in
some de-allocated stack variables. However, we found that our state uniqueness
reduction is sufficient to greatly reduce the state space without risking that
unique states may be lost.

4.5 Runtime-Agnostic Enclave Loading (G2)

Truthful symbolic execution naturally starts with an accurate representation of
the initial enclave memory layout (G1b). Unfortunately, however, in contrast
to well-established standards like the executable and linkable format (ELF) for
Linux binaries, there exists no standardized format to distribute SGX binaries.
Hence, over the last years, all SGX shielding runtimes have adopted their
own custom formats to describe the additional information needed to correctly
load the enclave, e.g., often by encoding opaque blobs into additional ELF
metadata sections [78, 101]. This is especially problematic as Intel SGX requires
a particularly involved, multi-stage loading process [40, 77].

First, the untrusted system software constructs the initial enclave memory
layout, containing regions for code and data, and also including several unique
enclave-specific data structures. The two most prominent data structures are
the SECS structure describing, among others, the enclave load address and size,
as well as the TCSs, describing the enclave entry point and thread-local data
storage. Furthermore, as SGX enclaves are commonly compiled as position-
independent code and loaded as dynamic libraries, the MRENCLAVE identity
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must be independent of the load address. Hence, the enclave cannot rely on
the untrusted loader to perform any remaining ELF relocations (e.g., for
dynamic function-pointer tables). Thus, as a second loading step, enclave
shielding runtimes generally include in-enclave code to perform any necessary
ELF relocations upon the first enclave entry, i.e., after the enclave has already
been created and loaded into memory.

Static Analysis Notably, all prior works [12, 35, 80] on SGX-aware symbolic
execution entirely side-step the aforementioned intricacies by restricting
themselves to one particular runtime, specifically the Intel SGX SDK, and
by loading the enclave largely as a normal ELF file. Particularly, existing
approaches only take care to create approximate space for stack and heap and
either skip to the application directly [35], or they manually patch fragile and
version-specific global data structures to falsely mark the symbolic enclave as
initialized and skip over the costly, low-level runtime initialization and relocation
phases [12]. Thus, prior works simulate an inaccurate enclave memory layout
(vs. G1b) and are, moreover, only compatible with one specific version of one
specific runtime (vs. G2).

We argue that, with ample code review or reverse-engineering efforts, it is in
principle possible to devise an approach that accurately mimics the runtime-
specific loading process to construct a truthful initial memory layout, satisfying
G1b. Indeed, Appendix C.2 describes such optional support we added to
Pandora to load enclave binaries from selected runtimes based on static analysis
of a given enclave binary. We found, however, that such a purely static-analysis
approach is highly labor-intensive and inherently fragile, requiring to implement
a custom loader for every studied enclave runtime, possibly even with changes
across runtime versions. This would evidently limit the scope and not satisfy our
vision of runtime-agnostic analysis for the sprawling SGX ecosystem that has
become heterogeneous both in runtime capabilities as well as in programming
languages available to the enclave developer.

Dynamic Enclave Memory Extraction To overcome the labor-intensity and
inherent fragility of the above pure static analysis approach with runtime-specific
loaders, Pandora supports a more powerful approach that requires a short-lived
dynamic execution phase to load the binary-under-test once. Specifically, we
developed a minimal standalone program, called SGX-TRACER, to passively
observe the loading process of an enclave binary on actual Intel SGX hardware.?
SGX-TRACER consists of about 400 lines of C code and uses the ptrace Linux

3Real SGX hardware may not even be a strict requirement, as SGX-TRACER could, in
principle, also spoof the existence of the SGX driver.
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system call to attach to the untrusted enclave host process and intercept all calls
to the (in-kernel or out-of-tree) Intel SGX driver. SGX-TRACER can thus fully
transparently (7) detect enclave creation via ECREATE and record crucial enclave
SECS metadata, including load address and size; (ii) record the exact memory
contents of all pages that are subsequently added via EADD; and (74) track
additional metadata and permissions for these pages, as well as locate special
pages like TCSs, before the enclave identity is finalized via EINIT. This allows
SGX-TRACER to accurately extract the ezact initial enclave memory (G1b), as
attested by MRENCLAVE, for any SGX process (G2).

The output by SGX-TRACER is stored as a binary dump and accompanying
JSON file and can subsequently be used on non-SGX hardware by Pandora.
Particularly, we developed a minimal angr loader to reconstruct a truthful
symbolic memory view, including permissions of each page and whether the
page is measured or unmeasured (cf. Section 4.4.3). This inherently runtime-
agnostic loader makes Pandora compatible with any enclave dump extracted
via SGX-TRACER, regardless of runtime-specific loading details.

One downside of utilizing an enclave memory dump for symbolic execution is
that this process loses all debug symbols, including function names. Pandora
can run without any of these symbols, but upon finding a potential vulnerability,
the generated reports may be less understandable for human analysts (vs. G4).
Hence, we implemented a custom symbol handler that can augment a plain
memory dump extracted by SGX-TRACER with symbol information from the
original ELF file, if optionally provided via a Pandora command-line option
(together with a static offset).

4.6 Pluggable Vulnerability Detection (G3)

During symbolic exploration, angr triggers a set of breakpoints that can be
hooked to investigate the symbolic state. Exemplary angr breakpoints are
memory or register accesses and function calls. Pandora extends the legacy angr
events with a set of eight new enclave-specific breakpoints (cf. Appendix C.3).
Specifically, Pandora exposes breakpoints before and after enclave entry and
exit, as well as breakpoints before and after symbolic memory reads and writes
that are restricted to resolve fully inside, fully outside, or partially overlapping
with the enclave memory range.

Pandora’s enclave-aware breakpoints form the basis for our notion of pluggable
vulnerability detection (G3). Specifically, specialized plugins can subscribe
to relevant enclave events, as well as legacy angr breakpoints, to accurately
validate certain software invariants during symbolic exploration. We created 4



PLUGGABLE VULNERABILITY DETECTION (G3) 107

plugins for a diverse set of enclave shielding runtime responsibilities at the
levels of ABI register cleansing, API-level pointer arguments, APIC-style
pointer alignment considerations, and attacker-controlled control flows. Plugins
can, furthermore, make use of Pandora’s built-in reporting interface (G4) to
conveniently summarize any findings in human-readable HTML reports that
are automatically annotated with all relevant information, e.g., a severity
score and description of the issue and how to reach the vulnerable state (cf.
Appendix C.1).

4.6.1 ABI-Level CPU Register Sanitization

Enclaves share the CPU register set with their untrusted surrounding host
process. An important responsibility of the shielding runtime is, therefore, to
securely initialize any low-level configurations registers on enclave entry. Due to
the intricacies of these low-level register manipulations, those sanitizations have
to be carefully implemented in a fragile, hand-written assembly stub before a
jump into higher-level languages can be securely made, compliant with ABI
expectations [52, 93] by the compiler.

While the general concept of ABI-level sanitization is relatively well-understood
across SGX shielding runtimes, an ongoing line of manually discovered
vulnerabilities [5, 41, 73, 153, 157] has underlined the intricacies and challenges
for secure register initialization in the complex x86 instruction set. Prior work
on automated enclave software vulnerability detection has either fully ignored
CPU register sanitization by focusing on API validation only [35, 36, 80], or
resorted to a simplistic and incomplete blocklist approach that merely checks
whether selected CPU registers have certain concrete safe values [12]. On the
other hand, Pandora’s ABISan plugin proposes a more principled approach
based on taint tracking, which can autonomously discover insufficient register
initialization or cleansing.

Attacker-Tainted Configuration Registers

The ABISan plugin hooks all angr register read events and relies on Pandora’s
taint-tracking mechanism (cf. Section 4.4.2) to report critical violations when
attacker-tainted, uninitialized CPU configuration registers are read. To avoid
evident false positives, ABISan only requires a concise allowlist for the x86
data registers, i.e., the 16 general-purpose registers, 16 vector registers, and
floating-point unit (FPU) register stack, which do not contain control or status
bits and, hence, are allowed to be tainted with attacker inputs. Any other
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attacker-tainted register reads will be automatically reported as critical policy
violations.

Our systematic taint-tracking approach has two main strengths compared to
simply checking that an incomplete subset of registers has been initialized
to certain values [12]. First, ABISan can autonomously track all relevant
occurrences where the attacker has influence over the result of a computation
through control registers.* This may, in principle, even include yet unknown
ABI attack avenues. For instance, we experimentally validated that ABISan
can fully autonomously discover attacker-tainted reads from individual bits
in the RFLAGS [157] register, e.g., the crucial direction flag for x86 REP
string instructions, as well as a particularly subtle oversight for floating-
point operations that required several rounds of patches in Rust-EDP and
OpenEnclave to make sure that not only the x87 FPU control word is initialized,
but also the internal x87 tag word [5]. Second, ABISan also enables tracking
advanced attack vectors where the enclave would inadvertently restore tainted
control registers prior to using them in a computation.

Enclave Entry Sanitization

Our ABISan plugin inspects the complete register state when reaching the
first CALL instruction inside the enclave. Indeed, the first function call
inside the enclave revealed to be a surprisingly effective heuristic for the
switch from assembly sanitization code to the higher-level, compiler-generated
API entry point: across the 10 investigated runtimes, only a single runtime
performed a CALL from inside assembly code before jumping to C code, which
we accommodated in our heuristic. Upon reaching the API entry point, ABISan
warns for every control and data register that has not been entirely cleared of
attacker-tainted data.

Thanks to Pandora’s powerful taint-tracking mechanism and enclave-aware
execution model, we were able to express the entire ABISan policy in only
142 lines of Python code. It is important to note that the flexible nature
of our plugins allows for quickly reacting to the ever-changing landscape of
recommendations to ABI sanitization responsibilities for Intel SGX. For example,
initial research [5] first investigated issues with incomplete sanitization of floating-
point control registers and recommended setting the MXCSR register to the
ABI-specified value of 0x1F80 on enclave entry. More recently, however, Intel [73]
further nuanced secure MXCSR initialization by recommending the value Ox1FBF,

4The only limitation here is that we are restricted to the subset of x86 behavior that is
emulated by angr. For instance, angr does not consider the alignment-check flag in RFLAGS,
and, while floating-point precision and rounding modes are kept track of, we found that they
are largely ignored in the underlying VEX symbolic-execution engine.
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which additionally sets all floating-point exception status flags, to protect against
subtle, one-cycle timing differences dependent on (possibly secret) floating-point
operand values. We were able to swiftly incorporate this latest recommendation
into ABISan’s validation policy. This demonstrates that our plugin system can
react flexibly and promptly to such updated recommendations, which, as we
will show in Section 4.7, require changes that propagate slowly throughout the
Intel SGX software ecosystem.

4.6.2 Untrusted Pointer Value Sanitization

We implemented a capable PTRSan plugin in 120 lines of Python code that
proposes three expressive security invariants to catch the pervasive issues of
confused-deputy attacks via untrusted pointer arguments in the shared address
space. Note that, in contrast to prior work [12, 35, 80], PTRSan is entirely
independent of the runtime-specific sanitization function, solely relying on
Pandora’s built-in taint tracking and enclave-aware memory model. Hence, as
demonstrated in Section 4.7, PTRSan for the first time allows to find subtle
logical errors in the sanitization logic itself.

Address Inside or Outside Enclave

Any symbolic memory access that may resolve both outside or inside the
enclave memory range is a clear violation of the distinction between trusted
and untrusted memory regions. These cases are, hence, always reported as
a critical issue of a pointer that has not been sufficiently constrained by the
enclave software. Note that this case also covers accesses that may (partially)
cross the enclave boundary.

Tainted In-Enclave Address

Attacker-tainted accesses that are constrained to resolve entirely in untrusted
memory are clearly benign behavior of the enclave. On the other hand,
attacker-tainted accesses that are constrained to always lie entirely in trusted
enclave memory may still be benign behavior, e.g., an attacker-controlled,
yet constrained index into an in-enclave array data structure. Hence, we only
report a warning in these cases and mark them as potential issues that may
warrant manual and application-specific further inspection. To simplify such
further analysis, PTRSan reports the size and maximum address range of the
tainted memory access. This criterion to warn for tainted in-enclave memory
accesses thus ensures that no clear violation of secure memory accesses can
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occur, at the potential burden of occasional false-positive warnings. These false
positive are non-straightforward to eliminate generically, but we discuss possible
enhancements and heuristics in Section 4.8.

Untainted Outside-Enclave Address

Untainted accesses that are constrained to always resolve entirely in enclave
memory are clearly benign behavior of the enclave. However, if untrusted
memory is ever accessed with an address that is not tainted by the attacker,
PTRSan sees this as a critical issue hinting at unexpected behavior, e.g., an
uninitialized or NULL pointer dereference.

4.6.3 Untrusted Pointer Alignment Sanitization

The recently disclosed EPIC [26] and MMIO stale data leakage [74] attacks
on Intel SGX platforms have shown that enclave secrets may propagate from
microarchitectural fill buffers into architectural, software-visible registers when
dereferencing unaligned pointers to MMIO devices. While CPU microcode
updates have since been released to transparently cleanse fill buffers upon
enclave exits on affected processors, additional software mitigations are still
necessary to prevent confused-deputy exploitation of these issues during enclave
execution [74, 75]. That is, even when the enclave shielding runtime has
properly checked that untrusted, attacker-tainted pointer arguments fall entirely
outside the enclave memory range, as can be validated by PTRSan, SGX enclaves
have no way of knowing whether these untrusted memory locations refer to
vulnerable MMIO regions. Indeed, privileged adversaries can trivially map
untrusted memory pages to arbitrary MMIO devices, including the x86 APIC
configuration registers [159]. As such, dereferencing untrusted pointers during
enclave execution may unintentionally expose secret stale data, and Intel
explicitly advises that SGX shielding runtimes should additionally constrain
untrusted pointer dereferences to certain safe combinations of alignments and
lengths [74, 75]. Note that this holds both for outside-enclave reads and writes,
through the shared buffers data read (SBDR) and device register partial write
(DRPW) processor vulnerabilities, respectively.

In response to these dynamic challenges, we developed a specialized EPICSan
plugin, which investigates the alignment of each symbolic memory access
that may resolve outside the enclave. Specifically, in accordance with Intel’s
intricate software security guidance [74, 75], we validate that every untrusted
read or write access resolving outside the enclave is minimally 8-byte aligned,
i.e., has the lower three address bits cleared. We, furthermore, ensure that
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untrusted read accesses have a size that is always mazximally eight bytes at
a time, whereas untrusted writes should be in chunks of multiples of eight
bytes at a time [74]. Finally, when detecting unaligned untrusted writes,
EPICSan parses the disassembly of the current basic block to filter out safe
cases where the vulnerable write is preceded by the VERW instruction to cleanse
leaky microarchitectural buffers and directly followed by an LFENCE; MFENCE
instruction pair to avoid inadvertent transient refills, as per Intel’s software
security guidance [74].

Our complete EPICSan validator requires only 103 lines of Python code, where
the majority of code concerns parsing the disassembly. This clearly shows the
strength of exposing Pandora’s enclave-aware memory model (cf. Section 4.4.3)
to individual plugins that may have partially overlapping functionality, e.g.,
PTRSan vs. EPICSan.

The recent SBDR/DRPW disclosures required extensive manual software
mitigations, frequently encompassing several rounds of commits and pull
requests, throughout the SGX runtime ecosystem. We are the first to provide
any form of toolchain support for automatically detecting and validating SGX
pointer-alignment considerations, and we are the first to perform a wide-scale
investigation of such issues remaining in real-world enclaves (cf. Section 4.7).

4.6.4 Control-Flow Hijacking Validation

Lastly, Pandora includes a CFSan plugin, implemented in 110 lines of Python
code, that validates enclave control-flow events. This plugin reports insecure
jump targets according to the location of the target and whether the target is
attacker-tainted.

First, similar to prior work [12, 35], we report a critical security issue when the
attacker can arbitrarily control a jump target inside the enclave. Furthermore,
similar to the false-positive heuristic for CFSan, we only report a warning when
attacker-tainted jump targets are constrained to always fall entirely inside the
enclave.

In addition to this first criterion, partially covered by prior work, CFSan
also includes novel rules to detect any enclave jumps to attacker-controlled
memory contents. Specifically, we found that several shielding runtimes feature
unmeasured and executable memory pages, so as to dynamically load (encrypted)
code at runtime. As explained in Section 4.4.3, this type of enclave memory
is not part of the attested MRENCLAVE measurement and is, as such, initially
attacker-controlled until it is first initialized by enclave software. Thus, any
enclave jumps to unmeasured memory that has not yet been initialized are
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reported as a critical security issue. While, apart from validation on our own
test enclaves, we have not encountered such instances in our evaluation on
real-world enclave binaries, we are the first to formulate and write a sanitizer
for this nuanced class of novel unmeasured enclave vulnerabilities.

Finally, note that, in line with our goal of truthful symbolic execution, the
Pandora base engine already intercepts any jumps to outside the enclave memory
range or to non-executable pages inside the enclave, regardless of CFSan. We
simply abort the symbolic execution paths for these cases, as both of these
events would result in a runtime exception on real SGX hardware and would,
hence, not be an exploitable vulnerability besides denial-of-service.

4.7 Evaluation

We evaluated the efficacy of Pandora and its vulnerability detection plugins
in two distinct ways. First, we developed a concise unit-test validation
framework, loosely based on the existing Linux selftest enclave [145], to
precisely diagnose (known) vulnerabilities in small benchmark enclaves compiled
with increasing levels of mitigations. Second, we performed a comprehensive
ecosystem analysis on 10 relevant, real-world SGX shielding runtimes, uncovering
over 174 newly found vulnerable code locations, tracked via 7 (anonymized)
common vulnerabilities and exposure (CVE) identifiers. Additionally, further
demonstrating the versatility of Pandora, we made our symbolic-execution tool
autonomously reproduce over 69 previously known vulnerable code locations
from the literature in older versions of the investigated runtimes. Table 4.2
provides an overview of all reported and reproduced issues, whereas a more
detailed breakdown is included in Appendix C.4.

4.7.1 Selftest Validation Framework

The Linux kernel natively includes drivers for Intel SGX since the 5.11
release [145]. As part of this effort, Linux also contains a bare-metal selftest
enclave that provides a minimal example to test the loading and execution of an
enclave binary without relying on any particular SGX shielding runtime. This
Linux selftest enclave consists of hand-crafted assembly routines for entry and
exit, plus an ecall dispatcher that calls C functions. While this selftest enclave
is not intended to be a production runtime, Linux developers have noted that
its code may be copied and provides a “great starting point if you want to do
things from scratch” [120]. Indeed, we found that at least one real-world SGX
project directly built on the Linux selftest enclave to date: Alibaba Inclavare
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Table 4.2: Evidence of Pandora finding and reproducing vulnerabilities both in
production and research runtimes.

Runtime Version Prod Src Plugin Instances CVE

Newly found vulnerabilities in shielding runtimes (total 174 instances)

CVE-2023-38022
CVE-2023-38021

CVE-2022-26509

CVE-2023-37479

CVE-2022-46487
CVE-2022-46486
CVE-2023-38023

CVE-2019-14565

CVE-2019-1370
CVE-2019-0876

EnclaveOS  3.28 v X' ABISan 1
EnclaveOS  3.28 v X' PTRSan 15
EnclaveOS 3.28 v X' EPICSan 33
EnclaveOS 3.28 v X' CFSan 2
GoTEE b35f X V PTRSan 31
GoTEE b35f X V EPICSan 18
GoTEE b35f X V CFSan 1
Gramine 1.4 vV v ABISan 1
Intel SDK 2.15.1 v/ v PTRSan 2
Intel SDK 2.19 vV EPICSan 22
> Occlum 0.29.4 v v/ EPICSan 11
Linux selftest 5.18 X V  ABISan 1
— Inclavare  0.6.2 X ABISan 1
Linux selftest 5.18 X V PTRSan 5
s Inclavare  0.6.2 X  PTRSan 2
Linux selftest 5.18 X  CFSan 1
— Inclavare  0.6.2 X  CFSan 1
Open Enclave 0.19.0 v vV ABISan 2
Rust EDP 1.71 vV ABISan 1
SCONE 5.7 v X ABISan 2
SCONE 5.7 v/ X PTRSan 10
SCONE 5.7 v X [EPICSan 11
Reproduced vulnerabilities in older versions (total 69 instances)
GoTEE b35f X v ABISan 1
Gramine 1.2 vV EPICSan 10
Intel SDK 2.1.1 vV vV ABISan 1
Intel SDK 2.13.3 v v EPICSan 28
Open Enclave 0.4.1 v vV ABISan 1
Open Enclave 0.4.1 v v PTRSan 13
Open Enclave 0.4.1 v v/ EPICSan 13
Rust EDP 1.63 v v EPICSan 2

Legend:  Source code was made privately available; "> Based on above runtime.
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Containers [7] uses it as a skeleton example of best-practice enclave runtime
integration. We report Pandora’s findings on these bare-metal enclaves in the
next section.

We developed a unit-test framework based on the Linux selftest enclave. This
test suite contains individually crafted enclave binaries featuring multiple levels
of ABI register cleansing and input pointer(-to-pointer) sanitizations. These
enclaves, thus, provide a controlled test environment to craft arbitrarily complex
and challenging scenarios to validate the efficacy of our plugins and Pandora’s
enclave-aware symbolic memory model. Furthermore, they allow to prototype
conceivable vulnerabilities that have not (yet) been encountered “in the wild”,
e.g., jumps to unmeasured and uninitialized pages (cf. Section 4.6.4).

4.7.2 SGX Runtime Ecosystem Analysis

Runtime Selection To explore the vulnerability landscape for real-world
enclave software, we evaluated Pandora on a diverse set of 7 production-quality
and 3 research-grade Intel SGX shielding runtimes. Note that, as discussed in
Section 4.3, we opted to focus on validating the vital enclave shielding runtime
itself, including indispensable, low-level initialization and entry code, rather
than the more accessible challenge of validating higher-level application logic as
explored in complementary prior work [12, 35, 36]. While the latter typically
only affects a single (research) application that makes incorrect use of shielding
abstractions, e.g., unchecked user_check pointers [78, 101], production-quality
shielding runtimes are supposed to be thoroughly vetted and any vulnerabilities
found would affect universally all applications developed on top.

Our runtime selection includes diverse enclave programming paradigms,
including 2 SDKs (Intel SGX SDK [78] and Microsoft Open Enclave [101]),
4 1ibOSs (EnclaveOS [54], SCONE [124], Occlum [130], and Gramine [144]),
2 secured language runtimes (Rust-EDP [53] and Go-TEE [58]), and 2 bare-
metal enclaves (Linux selftest [145], and Inclavare [7]). We included the bare-
metal enclaves, as well as the academic Go-TEE research prototype runtime,
to complement the insights from the more mature production ecosystem.
Furthermore, while the majority of SGX shielding runtimes are developed
as open-source software, our selection also includes two proprietary runtimes:
EnclaveOS, with source code privately provided by the vendor, and SCONE,
with only binaries available.

Due to the intricacies involved in building old runtime versions with often
complex dependencies, we opted to limit our choice of known vulnerabilities to
a representative sample across major runtimes. We see a systematic overview
of the vulnerability landscape of past runtimes as an interesting and feasible
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direction for future work and believe that Pandora could aid in such a survey.
In the following, after describing our experimental setup, we highlight the most
interesting findings of each plugin.

Experimental Setup We extracted exact enclave dumps via SGX-TRACER and
ran Pandora on all runtimes with a time budget of 12 hours and a memory
budget of 256 GB, whichever occurred first. Cloud instances with such memory
budget are commercially available beginning at 4$ per hour, making this
limit feasible for occasional extensive validation with Pandora, e.g., as part
of continuous integration (CI) for releases (as at least one vendor privately
expressed interest in). Each runtime was explored twice: once with a default
breadth-first exploration strategy and once with a depth-first strategy that
eagerly followed the longest paths.

We note that in our experiments, the 256 GB memory limit was only hit
twice, namely for the Intel SGX SDK 2.19 when using breadth-first search
after approximately 8 hours, and for GOTEE as the enclave memory dump is
exceedingly large at 64 GB. In all other cases, the memory consumption varied
between 24.6 GB and 196.7 GB for breadth-first search and from 4.9 GB to
154.7 GB for depth-first search.

In some rare cases, our Pandora prototype crashed before reaching these
limits due to remaining unsupported x86 instructions or due to crashes in
the underlying angr and z3 solver. For EnclaveOS specifically, we manually
guided Pandora to skip two functions that either contain still unsupported
AES-NI instructions, or execute a waiting loop that expects a second thread to
fill data before continuing.

ABI Sanitization Issues

Following a recent overview study [153], Pandora promptly confirmed known
ABI issues in older Intel SGX SDK and Open Enclave binaries, which have since
been evidently mitigated (cf. Table 4.2). Nonetheless, Pandora found that the
proprietary SCONE runtime still lacked any sanitization code for x87 and SSE
floating-point configuration registers. We experimentally demonstrated that
this lack of ABI sanitization, can be exploited in practice via a proof-of-concept
exploit that successfully introduces rounding errors in an elementary “sconified”
floating-point application. Following our responsible disclosure, tracked under
CVE-2022-46487, these issues have been patched in the latest SCONE release
5.8.0.
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Additionally, ABISan found that the academic GoTEE runtime, as well as the
Linux selftest enclave and Inclavare, universally lack ABI entry sanitizations
for RFLAGS and floating-point configuration registers. Interestingly, Inclavare
took care to cleanse extended processor state on enclave exit, but not on entry.
Highlighting the strength of ABISan’s taint policy, the plugin autonomously
discovered that GoTEE even lacks secure stack pointer initialization, which
could be exploited to obtain full code execution in this runtime (cf. as also
reported by both CFSan and PTRSan).

Our systematic analysis, furthermore, identified an interesting case of regression
in Open Enclave, which was assigned CVE-2023-37479 by Microsoft and
mitigated in release 0.19.3. Particularly, in response to prior research [157],
commit efe7504 in Open Enclave included a patch to properly sanitize the x86
alignment-check flag. However, ABISan discovered that in current versions of
Open Enclave, the alignment-check flag was no longer properly sanitized after the
initial enclave sanitization routines have completed. Upon further investigation,
we were able to conclude that Open Enclave accidentally reintroduced the
once-fixed vulnerability with commit 16efbd6é in 2021, in a patch set to
mitigate another attack [41] that places more stringent demands on stack-pointer
initialization for exception handlers. This instance of unintended regression thus
provides a clear illustration of the complexity of shielding responsibilities and
the potential value of including an automated tool like Pandora in CI pipelines
to test against known vulnerabilities before releasing new software versions.

A final and particularly widespread line of ABI sanitization issues follows
from Intel’s recent MXCSR configuration-dependent timing (MCDT) software
guidance [73]. Particularly, Intel recommends that shielding runtimes set all
floating-point exception status flags in the MXCSR register for the lifetime of
the enclave to avoid subtle, operand-dependent timing differences in otherwise
constant-time code on affected processors. Notably, this refined guidance did
not result from an academic publication or security advisory and may have
been easily missed by runtime developers. Indeed, ABISan detected that only
the Intel SGX SDK and the dependent Occlum runtime properly set MXCSR
according to the new recommendation, and all other runtimes did not. Following
our disclosure, this has since been patched in Open Enclave, Rust-EDP, and
EnclaveOS.

Pointer Sanitization Issues

The strength of the PTRSan plugin is to rigorously investigate issues with pointer
dereferences across many enclave runtimes.



EVALUATION 117

In the SCONE production runtime, PTRSan uncovered 10 unique critical issues:
8 entirely unconstrained, attacker-tainted pointer dereferences and 2 untainted
outside-enclave reads. Although the source code was not available, Pandora was
able to generate precise basic-block backtraces annotated with ELF symbols,
aiding in our investigation and even the development of proof-of-concept exploits.
We reported each issue, tracked as a bundle under cvE-2022-46486, to the
SCONE developers who confirmed our findings and included patches in the
latest release 5.8.0.

In EnclaveOS, PTRSan was able to detect a particularly subtle instance of an
untrusted pointer dereference as part of a string length calculation, which
is logically correct but can be abused as a capable side-channel oracle to
precisely locate all null bytes in enclave memory [157]. Fortanix gave a high
severity rating for this finding, tracked under cve-2023-38022, and mitigated
it promptly in version 3.29. As a second notable finding in EnclaveOS, Pandora
autonomously detected that overflow protections were missing in the untrusted
pointer validation logic of the enclave binary. Upon closer examination, we found
that existing source-level overflow checks were silently optimized away by the
compiler. Specifically, the source code utilized void* pointer arithmetic, which,
unfortunately, is undefined behavior in C, leading to the compiler removing this
check completely. Pandora correctly reported that, with this check missing,
the attacker can cause untrusted pointers to wrap the address space via an
unsigned integer overflow. This issue, thus, highlights the strength of Pandora’s
binary-level validation and accurate symbolic constraint solving of not only
untrusted pointer values, but also their sizes.

Furthermore, as part of this research, PTRSan additionally confirmed an
untrusted pointer dereference in the protected code loader of the Intel SGX SDK
version 2.15.1, tracked via CVE-2022-26509 and patched in later versions. This
issue underlines the importance of validating low-level runtime initialization code,
as this pointer check was missing before any in-enclave relocations, including
global variables containing the enclave base address and size needed in the
validation function itself, had been performed.

In the GOTEE research runtime, PTRSan discovered numerous (31) unconstrained
pointer dereferences, highlighting that even safe languages are not immune to
oversights in pointer validation for SGX’s unique attacker model. Furthermore,
all bare-metal enclaves were found especially vulnerable without any pointer
sanitization measures (as reported both by PTRSan and EPICSan). Likewise,
the Inclavare enclave contains several vulnerable invocations of memcpy with
unconstrained source and destination parameters, and the Linux selftest enclave
contains 5 entirely unconstrained, attacker-tainted pointer dereference locations
that can be trivially exploited to leak or corrupt arbitrary in-enclave memory
locations.
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Finally, for the known-vulnerable version 0.4.1 of Microsoft Open Enclave,
Pandora correctly identified cvVE-2019-0876 [157], which highlights the power
of multiple reentries, as the vulnerability can only be triggered after the enclave
has been initialized. In addition, PTRSan also reported a (presumably unknown)
issue in this old runtime version, indicating a lack of pointer sanitization in the
oe_initialize_cpuid() function.

AEPIC Sanitization Issues

Pandora is the first tool to support automated analysis and validation of APIC-
style untrusted pointer alignment vulnerabilities in SGX enclaves. We, thus,
employed our novel EPICSan plugin to perform a large-scale, automated analysis
to assess the completeness of Intel’s particularly complex and error-prone
software mitigation guidelines [74, 75] in real-world enclave shielding runtimes.
As result of this systematic analysis, Pandora found that SBDR and DRPW
mitigations were missing entirely in GoOTEE (18 unique instances), SCONE
(11 instances; tracked via CVE-2022-46487 and mitigated in version 5.8.0),
and EnclaveOS (33 instances; tracked via CVE-2023-38021 and mitigated in
release 3.32). Existing mitigations in Gramine, Rust-EDP, and Open Enclave
were found sufficient, but EPICSan autonomously discovered a missing SBDR
sanitization in the enclave initialization phase of the latest version of the Intel
SGX SDK (also inherited by the derived Occlum runtime), highlighting that
adequately restricting untrusted pointer alignments is challenging even for
mature runtime developers.

As expected, we additionally confirmed that EPICSan can automatically
reproduce ample SBDR and DRPW issues in older versions of Gramine, Rust-
EDP, Open Enclave, and the Intel SGX SDK without mitigations.

Control Flow Issues

The CFSan plugin found a delicate issue in EnclaveOS where the global
offset table (GOT) is incorrectly accessed before relocation of the enclave
has completed. The GOT is used to jump to functions in position-independent
code and has to be securely initialized, i.e., relocated, before it can be used
inside enclaves. The issue found by Pandora, and confirmed and fixed by
Fortanix, concerns an unusual trace where an error occurs during initialization,
which results in the code calling a debug logging function.

Furthermore, CFSan found that Inclavare’s bare-metal enclave assembly entry
stub incorrectly uses a signed JGE x86 jump instruction, instead of a proper
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unsigned JAE condition to sanitize the attacker-provided index into the ecall
function-pointer table. Critically, this subtle oversight ultimately allows
arbitrary control-flow hijacking by passing a large negative index into the ecall
table and loading the function pointer from untrusted, attacker-controlled
memory. Likewise, CFSan found that, depending on the optimization level,
in-enclave relocation code for the ecall table was missing in the dispatcher of
the Linux selftest enclave.

Finally, due to the lack of secure stack switching in GoTEE, CFSan reported
unconstrained RET targets.

4.8 Discussion

We see Pandora as a mature prototype of an enclave-aware symbolic execution
tool that can serve as a basis for future science. In particular, we designed
Pandora with great care for usability, through a well-documented command
line interface and detailed HTML reports, and reusability through our plugin-
based approach that makes it easy to implement additional security analyses.
Pandora has demonstrated its usefulness by automatically finding vulnerabilities
in production runtimes. Hence, we believe that Pandora is a valuable step
forward in vulnerability detection for enclaves.

Limitations Pandora, as any symbolic-execution tool, suffers from the well-
known limitation of state explosion, which can make exhaustive exploration
of larger binaries practically infeasible. Hence, vulnerabilities can still remain
undetected in unexplored paths. Furthermore, angr [164] itself is not sound as
it may concretize values during symbolic execution. To avoid missing program
behavior, we adopted the most conservative approach whenever possible and
tried to refrain from unnecessary concretization of symbolic values. Despite these
limitations, angr is particularly powerful for rapid development of vulnerability
plugins in comparison to fully fledged code verification tools. Moreover, Pandora
is still able to automatically find vulnerabilities in production runtimes, which
demonstrates the practicality of the approach. We implemented novel, enclave-
aware performance optimizations, including uninitialized memory and state-
uniqueness reductions (cf. Section 4.4.5), and we utilized both breadth-first and
depth-first exploration in our evaluation to cover more enclave behavior.

Additionally, as any automatic vulnerability scanner, Pandora can report false-
positive issues, which can potentially lead to overly exhaustive outputs. Pandora
attempts to limit the strain on the human analyst via two steps. First, potential
issues are classified into multiple levels of criticality, and the report outputs are
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formatted in modern HTML forms that allow to filter away given criticality levels.
Second, plugins may downgrade the severity of issues via sensible heuristics, e.g.,
Section 4.6.2 explained how PTRSan downgrades attacker-tainted pointers when
they are constrained to a region entirely inside the enclave, closely resembling
the benign pattern of an attacker-controlled index in a trusted enclave buffer.

Future Work Potential future extensions of Pandora concern novel vulnerability-
detection plugins, as well as the investigation of transient execution access
patterns in enclaves [30, 43, 67]. Furthermore, we see Pandora as a useful
tool for a broad ecosystem analysis of the Intel SGX landscape and how fast
vulnerability patches propagate across runtimes. Ultimately, future work could
even explore automated exploit generation and binary patching using Pandora’s
precise vulnerability reports.

There are additionally some performance improvements that could allow Pandora
to explore enclaves in even more depth. While we already implemented a depth-
first extension to Pandora that severely limits the memory use necessary during
exploration, angr still only utilizes one single CPU core. Future work could
thus investigate how angr symbolic exploration can be split up onto multiple
cores while retaining the same enclave-aware characteristics of Pandora that
are necessary to e.g., identify enclave boundaries. Additionally, to mitigate
path explosion, we could also adopt state-merging [85] or path prioritization
strategies [20, 90].

4.9 Conclusion

In recent years, a sizable ecosystem of Intel SGX enclave shielding runtimes has
emerged. However, writing secure SGX software has proven to be particularly
challenging due to the moving nature of the threat landscape, and not even
well-designed and vetted shielding runtimes have been immune to missing
nuanced attack vectors or to reintroducing already known vulnerabilities into
their code. The research community has only recently started to look into
SGX-aware symbolic execution, but has focused on application logic only while
largely skipping the crucial enclave shielding runtime itself. In this work, we
presented Pandora, the first enclave-aware and pluggable symbolic-execution tool
that allows truthfully validating arbitrary enclave binaries, including low-level
runtime initialization and entry phases. With 4 diverse prototype plugins, we
found 174 new and 69 known vulnerable code locations across a wide selection
of 10 SGX runtimes. Ultimately, we envision Pandora not only as a practical
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validation tool for real-world enclaves today, but also as a solid, extensible and
open-source foundation for future science on SGX software validation.






Chapter 5

Conclusion

Modern computing faces many security challenges due to increased inter-
connectivity and sharing of resources. Hardware-based isolation primitives
have established themselves as one viable path to secure those complex
environments and their diverse stakeholders. Nowadays, trusted execution
environments (TEEs) are maturing, and the research community understands
microarchitectural and architectural nuances and their security impacts better
than a few years ago. To that end, the most significant findings of the past years,
such as Foreshadow [151], LVI [154], PIC [26] and others, have been mitigated
with either microcode updates or can be alleviated by following strict developer
guidelines. At the same time, several research questions remain open before
TEEs can be adopted broadly. For example, while the research community may
have developed a clear understanding of the capabilities and limitations of the
current TEEs, this understanding may not yet reach across different levels of
developers’ expertise. This dissertation has made contributions in two directions
that can help bring modern trusted execution architectures closer to a broader
adoption: availability guarantees for mutually distrusting enclaves and interface
sanitization issues between enclaves and the untrusted environment.

In this chapter, we first summarize the contributions of this dissertation, then
outline potential directions for future work and lastly conclude with final
remarks.
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5.1 Summary of Contributions

Availability Guarantees for Mutually Distrusting Enclaves In Chapter 2, we
presented AION, which tackles the issue of providing availability to mutually
distrusting enclaves on the same system. By utilizing small hardware changes
to be able to place a real-time scheduler inside an enclave, AION can make this
scheduler enclave privileged for availability only. As a result, AION application
enclaves can benefit from strong hard real-time availability guarantees if they
trust the small scheduler enclave to provide this availability. At the same
time, these application enclaves must not trust the privileged scheduler for
confidentiality or integrity, nor do they need to trust any other enclave on
the system. AION shows that it is possible to carefully design modern enclave
architectures to equip them for the complex domain of mixed-criticality and
safety-critical systems.

Interface Sanitization in Intel SGX Software responsibilities for securing an
enclave in the growing and diverse ecosystem of Intel Software Guard Extensions
(SGX) are not sufficiently understood in practice. In parallel with related work,
our contribution presented in Chapter 3 provided one building block to a clearer
understanding of these software responsibilities of enclaves. We presented attacks
on the rounding and precision modes of legacy x87 floating-point units (FPUs)
and more modern Streaming SIMD Extensions (SSE) extensions and showcased
that even these seemingly trivial modifications can impact the integrity of an
enclave’s computation. Our fault injection attacks on the Intel SGX FPU have
led to two common vulnerabilities and exposures (CVEs) and patches in five
enclave shielding runtimes. With the clear recommendations that resulted from
our research, we aimed to help developers to sanitize their enclaves, and we
were able to help developers implement our recommendations in their products.

Yet, these recommendations were partially refined in early 2023 when a new
advisory by Intel unveiled more nuanced timing side channels, leading to an
updated configuration of the FPU on enclave entry [73]. This is but one example
of the fast-moving landscape of Intel SGX software responsibilities and what
sanitizations have to be applied to any interaction with the untrusted world. To
help both the research and developer community, we then presented Pandora as
a means of automatically analyzing an enclave and validating that it contains
no known vulnerabilities. With our approach of first creating a clear view of the
enclave’s memory at enclave creation time, Pandora is software development kit
(SDK)-agnostic and can analyze arbitrary enclave binaries, irrespective of the
developer’s tools of choice. In our work, we developed plugins to find four classes
of known vulnerability types, and we built Pandora to be highly extensible for
more such plugins. As a result, Pandora found 174 new vulnerability instances
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across 10 shielding runtimes, yielding 7 new CVEs. During this research, we
worked with several vendors to mitigate the found vulnerabilities, and one vendor
already notified interest in integrating Pandora into a continuous integration
pipeline. Our work and several vendors’ responses show that a high-quality
tool to find known vulnerabilities automatically can help move the domain of
Intel SGX development forward. We envision that a tool like Pandora can be
used across vendors and projects, and establish a common understanding of the
challenges enclaves face.

5.2 Future Work

Hardware-enforced isolation of software components has proven valuable and
usable in modern computing systems. Some effort remains, however, to secure
and ease the use of this latest addition of trusted execution technology that
allows to dynamically spawn multiple enclaves on a system that may mutually
distrust each other.

We see multiple directions for future work: evaluating availability on new
generations of TEEs, building out Pandora to other classes of vulnerabilities
and making it more practical, and investigating other TEEs-interfaces than
that of Intel SGX.

Availability on Upcoming TEEs

ATON investigated availability on Sancus, a research architecture that is based
on openMSP430. Related works exist that build on ARM TrustZone, such
as RT-TEE [166] and MrTEE [161]. A crucial difference between AI1ON and
the other availability works is, however, that the AION architecture is the
only architecture that allows mutually distrusting enclaves that additionally
do not have to trust the underlying software stack (i.e., the scheduler) for
confidentiality and integrity. In TrustZone, the operating system (OS) in the
secure world must be fully trusted by the trusted applications as it is the
privileged entity that sets up and controls the secure world. While co-located
applications in the secure world can be separated by means of virtual memory,
the OS is trusted in terms of confidentiality, integrity, and availability by all
applications.

An interesting research question arises with the upcoming ARM confidential
compute architecture (CCA) [15]. ARM CCA introduces a new security mode
called the realm management extension, which allows the creation of additional
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so-called realms alongside the legacy TrustZone secure world. These realms have
many similarities to enclaves, as they have been discussed in this dissertation.
Importantly, different realms do not have to trust each other and must neither
trust the underlying realm manager, 7.e., the hypervisor. At the same time,
the TrustZone secure world does not cease to exist but continues to have several
privileges without having direct access to the created realms.

Future work could explore how the ARM CCA architecture can be used
to provide strong availability guarantees to multiple realms simultaneously.
To a certain degree, we already discussed the capabilities of CCA regarding
trusted timestamping [4]. In this context, the guarantees provided by the realm
management software and hypervisor are similar to the trusted scheduler in
AION: The software is trusted to provide scheduling decisions but does not need
to be trusted for confidentiality and integrity. Additional effort is necessary,
however, to evaluate the capabilities of the CCA architecture and whether and
what services a real-time scheduler in the secure world can provide to mutually
distrusting mixed-criticality software separated into several realms.

A second orthogonal path for future work is to investigate and evaluate
availability guarantees on the modern RISC-V architecture. RISC-V shows
great promise due to its openness and several projects like Keystone [86] or
CURE [19] have already demonstrated TEEs on RISC-V. Migrating AION to a
more modern RISC-V architecture would allow future work to better compare
it to existing or upcoming works that similarly tackle enclave availability.

Increasing the Practicality of Pandora

In Chapter 4 we presented Pandora as a means of automatically checking
known vulnerabilities in arbitrary Intel SGX enclaves. We strongly believe that
our tool provides a reasonable trade-off between complex formal verification
and constrained software tests. At the same time, the applied method of
using symbolic execution to search for known vulnerabilities is not without
disadvantages.

In the following, we address two of the major disadvantages and how future work
can address them: the coverage of tools like Pandora in terms of vulnerabilities
and in terms of completeness of the analyzed code.

Coverage of Vulnerabilities A reasonable criticism of tools like Pandora is that
they can only detect already known vulnerabilities that the tool was designed
to detect. At the same time, we see a usable symbolic execution tool like
Pandora as a practical middle point. Although complex and time-consuming,
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formal verification of enclaves would allow to receive clear guarantees on the
security of a given enclave software. Yet, even formal verification is not without
errors, as provable security is not a guarantee for the absence of flaws in the
actual implementation. Any provably secure system relies on the correctness
and completeness of the underlying model, the match between the formal
model and actual implementation, and the completeness of the formalized and
proven lemmas. Related work has already shown that provably correct trusted
execution architectures are not necessarily always secure, as essential nuances
can be missed when modeling a system [24]. On the other end of the abstraction
spectrum lie software tests like unit tests in a continuous integration pipeline.
These tests have the benefit of being run directly on the implemented software,
nearly eliminating the danger of mismatching the checked model and reality.
However, the downside of these tests is that it is difficult for them to provide
any general statements about the absence of flaws. While specific undesired
test cases can be evaluated, a general statement that a similar case will not
happen is extremely difficult to generalize. One example of this is the case of
application binary interface (ABI) sanitization in Open Enclave that we discuss
in Section 4.7 where a unit test existed to verify the sanitization of the x86
direction flag but no test existed to verify the sanitization of the alignment
check flag. This oversight led to a case of regression where a missing alignment
check sanitization was reintroduced after this vulnerability had already been
mitigated a few years prior.

We thus see symbolic execution at the reasonable intersection of analyzing the
effective assembly-level code of the resulting enclave binary but also being able
to check clear mathematical constraints of the values that we simulate. Still,
a disadvantage of Pandora remains that it can only check for the absence of
vulnerabilities that it was programmed to check for. In the presented work,
we already carefully designed plugins like PTRSan so that it is able to detect
any issue with pointer sanitization as a result of the constraints placed on the
accessed pointer. Future work is necessary to address similar and related issues
and carefully write plugins and detection methods. Interesting areas of extension
for Pandora are the broad area of transient execution vulnerabilities for which
a new Pandora execution model must be implemented and interruption-based
attacks like SmashEx [41] and the new hardware-software co-design around
Intel SGX AEX-Notify [39].

Coverage of Analyzed Code Symbolic execution suffers from a problem called
state explosion, where each exploration step that contains a constraint branches
the explored state into two states: one with the constraint being true and
one with the constraint being false. This leads to an exponential increase in
the number of to-be-evaluated states throughout an exploration of a binary.
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While Pandora focused on the enclave shielding runtimes, i.e., the small parts
of an enclave that execute first, the guarantees provided by Pandora would
also be useful for the applications that are executed afterward. Future work
should explore how Pandora can be parallelized, how symbolic execution can
be coordinated across machines, and how the special semantics of enclaved
execution can be used as an advantage for symbolic execution. For example, after
the initialization phase of an enclave succeeded and the enclave returned from
this initial ecall, any subsequent ecalls can, in theory, be simulated in parallel
as they can be seen as independent in a constraint system. Thus, a parallelized
Pandora could take snapshots of specific states and ensure that a cohort of
threads investigates each possible path into the enclave application. While
this has its limit in regards to complex sequences of expected ecalls that are
enforced by the global state, parallelization in execution would allow for a broader
investigation of binaries in a short time. Similarly, an interesting extension
is the exploration of multi-threaded applications as Pandora is currently not
able to explore multi-threaded enclaves where different threads communicate
with and wait on each other during execution. Furthermore, future work should
also explore the coverage of Pandora so that a statement can be made of the
exploration depth that was reached during a specific run.

Other TEE Interfaces

This dissertation investigated interface sanitization issues between Intel SGX
enclaves and the untrusted world. While Intel SGX is exceptionally prone to
these issues due to the memory design of trusted and untrusted world sharing
an address space, other TEE architectures are not necessarily safe from similar
vulnerabilities. Future work, and in fact, continuous effort, should be put into
constantly reevaluating the intersection of trusted and untrusted domains to
ensure that the interface does not open up an attack surface for malicious
parties. Below, we discuss potential issues and future work directions for two
types of such TEEs: interfaces with accelerator TEEs and interfaces with virtual
machine (VM) TEEs.

Accelerator TEE Interfaces With the success of TEEs on central processing
unit (CPU) architectures, increasing effort is being put into also protecting
workloads on accelerators. Especially with the rise of machine learning,
there is increasing interest in moving the computation-heavy predictions and
learning onto accelerators that are explicitly designed for fast computations
of these workloads. One example of such accelerators is the Nvidia Hopper
architecture [110] that brings trusted execution technology to enterprise-grade
graphics processing units (GPUs). To protect workloads being processed
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inside Nvidia Hopper GPUs, explicit support for confidential computing allows
establishing an attested and authenticated channel between the CPU and GPU
TEEs. Interestingly, the Nvidia TEE has multiple operation modes to either
flexibility reserve the whole GPU for a single CPU client or to access individually
shielded VMs-based TEEs on the GPU from multiple, mutually distrusting
CPU clients [110]. This complexity adds a second layer on top of the already
challenging security CPU TEE landscape. Future work should investigate what
security issues arise from this interface between CPU and GPU and whether
and how a malicious party can impact the secure computations running inside
the GPU VM of another client.

VM TEE Interfaces TEEs released after Intel SGX are following the VM-
based protection approach that we introduced in Section 1.1.1, such as AMD
Secure Encrypted Virtualization (SEV) [9] and Intel Trust Domain Extensions
(TDX) [71]. While this dissertation focused on enclave architectures, future
work should investigate interface sanitization issues with VM-based TEEs. The
promise of these TEEs is that by drawing the isolation boundaries around the
OS, the hypervisor and any software underlying the OS must not be in the
trusted computing base (TCB) anymore. A side effect of trusting the OS is
that the protected application does not reside in the same address space as any
untrusted application, and thus the class of confused deputy attacks should not
apply to the majority of VM-based TEE applications. Yet, nuanced use cases
exist where the hypervisor may map shared pages into the address range of
the trusted world to enable communication with the untrusted world or, for
example, with peripheral drivers. These use cases then reintroduce the issue
of confused deputy attacks to the realm of VM-based architectures which may
be exceptionally prone to occurring issues as their key features allow running
unmodified code inside the trusted environment. Future work should investigate
potential issues arising from these and similar issues.

5.3 Concluding Remarks

The area of trusted execution environments is one promising building block to
ensure security in modern computing. This dissertation contributed to the state
of the art of enclave-based TEEs in two directions by proposing a hardware-
software co-design to ensure enclave availability, and by securing the interface
between untrusted and trusted environments. With the steady rise in interest
from academia and industry, confidential computing, in general, is a growing
domain that will, over the coming years, generate a larger variety of TEEs with
more complex architectures. On this path, however, multiple challenges still
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need to be overcome, and a better understanding of TEE security, capabilities,
and limitations must be formed. This dissertation provides a step towards
this understanding, and continued effort by the research community will be
instrumental to the success of confidential computing across the computing
spectrum.



Appendix A

Additional Resources for
AION

A.1 Atomicity State Machine

Figure A.1 shows the complete atomicity state machine with all edge cases.
Upon boot of the system (initial state), the global interrupt enable bit is set.
In this default state, legacy instructions like eint or dint have no effect on the
interrupt enable bit. Only a clix instruction can disable interrupts for x cycles.

Switching into an enclave starts the atomic enclave entry counter that allows
to atomically execute a clix instruction before being interrupted. Once the
atomic enclave entry or a clix instruction inside an enclave expires, the state
machine switches the enclave into an interruptable mode. In this mode, the
enclave can be interrupted at any point by the scheduler, but it can also restart
a clix instruction to enter a new atomic period. Crucially, however, the
atomicity engine will ensure that the enclave will always spend one cycle in
the interruptable enclave state to ensure that the scheduler will be executed if
requested by a timer interrupt.

Upon switching to the scheduler, i.e., the special enclave that has been spawned
as the first enclave on the system, any remaining clix counter is reset to zero
and the global interrupt enable bit is completely cleared. The scheduler is
thus the only entity that has unbounded control over the interrupt bit. Illegal
instructions like enclave entries from within an atomic enclave entry or nested
clix instructions lead to violations that are handled by the scheduler.
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Figure A.1: Atomicity state machine showing explicit and implicit transitions
from unprotected, enclaved, and scheduler states. Note that interrupt transitions
are not explicitly shown in this figure but can be interpreted as enter_sched
transitions.

A.2 Case Study Source Code in C

1#include <msp430.h>
2#include "uart.h"

3#include "uart_hardware.h"
4#include <stdio.h>

s#include "kernel_defines.h"
6#include "secure_mintimer.h"
7#include "log.h"
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g#include "sancus_helpers.h"

9

10 #define ___MACRO_CLIX(clix_length) \
11 __asm__("push ri15"); \

12 _asm__("mov.w %0, r16" : : "i"(clix_length)); \

13 __asm__(".word 0x1389"); \
14 __asm__("pop ri5");
15

16 #define _HAVE_APPA

17 #define _HAVE_APPB

18 #define _HAVE_APP_SLEEP
19 #define _HAVE_IO_THREAD
20

=R e e

21 2R/ Enclfove GRS S G s aaanaa B LB B LS L L ELSELSSS S s */

22 DECLARE_SM(ioenclave, 0x1234);

23

24 #ifdef _HAVE_IO_THREAD

25 #define IO0_BUFS 4

26 SM_DATA (ioenclave) unsigned char io_bufs[IO_BUFS] = {0, 0, 0, 0};

27 SM_DATA (ioenclave) bool io_ready[IO_BUFS] = {false, false, false,
falsel};

28 #endif

29

30 // Output

31 bool SM_ENTRY (ioenclave) io_uart_write_byte(unsigned char b)

32 {

s3#ifdef _HAVE_IO_THREAD

34 // Async I/0

35 ___MACRO_CLIX (50);

36 int caller = (int) sancus_get_caller_id();

37 if (!'caller || caller >= I0O_BUFS) { caller = 0; }
38 if (io_readyl[caller]) {

39 return (false);

40 } else {

41 io_bufs[caller] = b;

42 io_readyl[caller] = true;

43 return (true);

44 }

45 #else

46 // Sync I/0

47 ___MACRO_CLIX (30);

48 while (UART_STAT & UART_TX_FULL) {} // 1!
49 UART_TXD = b;

50 return (true);

51 #endif

52 }

53

54 // Read sensor

55 uint64_t SM_ENTRY (ioenclave) io_get_reading(void)
56 {

57 ___MACRO_CLIX (30);

58 return (secure_mintimer_now_usec64());

59 }
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60
61 #ifdef _HAVE_IO_THREAD

62 static char sm3_unprotected_stack [THREAD_EXTRA_STACKSIZE_PRINTF];
63 // Async I/0 thread

64 void SM_ENTRY (ioenclave) io_thread(void)

65 {

66 while (true) {

67 // this could implement *any* policy.

68 for (int i = 0; i < IO_BUFS; i++) {

69 if (io_ready[il]) {

70 ___MACRO_CLIX(30);

71 while (UART_STAT & UART_TX_FULL) {} // !!

72 UART_TXD = io_bufs[i];

73 io_ready[i] = false;

74 }

75 }

76 #ifdef _HAVE_APP_SLEEP

77 ___MACRO_CALL_SLEEP_FROM_SM(0x0100, 0x0001, ioenclave)
78 #endif

79 }

80 return;

81 }

82 #endif

83

L /5 === [P [l sessssssoooooosooooososooooososooosooosooososoooos */

ss #ifdef _HAVE_APPA
86 static char sml_unprotected_stack [THREAD_EXTRA_STACKSIZE_PRINTF];

s7 DECLARE_SM (appa, 0x1234);

88

89 SM_DATA (appa) uint64_t reading_a = O0;

90

91 void SM_ENTRY (appa) a_entry(void)

92 {

93 printf2("A: ID %d, called by %d\n",

94 sancus_get_self_id (), sancus_get_caller_id());
95

96 while (true) {

97 reading_a = io_get_reading();

o8 printf1("A: t is %lu\n", reading_a);

99 if (reading_a >= 50000) { io_uart_write_byte(’A’); }
100 #ifdef _HAVE_APP_SLEEP

101 ___MACRO_CALL_SLEEP_FROM_SM(0x0100, 0x0001, appa)
102 #endif

103 }

104 }

105 #endif

106

107

108 [0 I B R e e e L L L L L L Lt */

100 #ifdef _HAVE_APPB

110 static char sm2_unprotected_stack [THREAD_EXTRA_STACKSIZE_PRINTF];
111 DECLARE_SM (appb, 0x1234) ;

112
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113 SM_DATA (appb) uint64_t reading_b = 0;
114
115 void SM_ENTRY (appb) b_entry(void)

116 {

117 printf2("B: ID %d, called by %d\n",

118 sancus_get_self_id (), sancus_get_caller_id());
119

120 while (true) {

121 reading_b = io_get_reading();

122 printf1("B: t is %1lul\n", reading_b);

123 if (reading_b >= 50000) { io_uart_write_byte(’B’); }
124 #ifdef _HAVE_APP_SLEEP

125 ___MACRO_CALL_SLEEP_FROM_SM(0x0100, 0x0001, appb)
126 #endif

127 }

128 }

1290 #endif
130

131 /* --- Unprotected Job Creation —--—-—-——-—————————————————~——~—~——~—— */
132 int main(void)

133 {

134 LOG_INFO ("######## Riot on Sancus\n");

135 LOG_INFO("Case study with same prio levels\n");

136

137 while(sancus_enable (&ioenclave) == 0);

138 #ifdef _HAVE_APPA

139 while (sancus_enable (&appa) == 0);

140 #endif
141 #ifdef _HAVE_APPB

142 while (sancus_enable (&appb) == 0);

143 #endif

144

145 #ifdef _HAVE_APPA

146 thread_create_protected (

147 sml_unprotected_stack, // Unprotected stack for
OCALLS

148 THREAD _EXTRA_STACKSIZE_PRINTF, // size of the
unprotected stack

149 1, // Priority to give

150 THREAD _CREATE_WOUT_YIELD, // Thread create flag

151 SM_GET_ENTRY (appa), // SM Entry address

152 SM_GET_ENTRY_IDX (appa, a_entry), // SM IDX address

153 "AM); // Name for console
logging

154 #endif
155 #ifdef _HAVE_APPB

156 thread_create_protected (

157 sm2_unprotected_stack,

158 THREAD _EXTRA_STACKSIZE_PRINTF,
159 1,

160 THREAD_CREATE_WOUT_YIELD,

161 SM_GET_ENTRY (appb),

162 SM_GET_ENTRY_IDX (appb, b_entry),
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163 "B") g
164 #endif
165 #ifdef _HAVE_IO_THREAD

166 thread_create_protected(

167 sm3_unprotected_stack,

168 THREAD _EXTRA_STACKSIZE_PRINTF,

169 1,

170 THREAD _CREATE_WOUT_YIELD,

171 SM_GET_ENTRY (ioenclave),

172 SM_GET_ENTRY_IDX (ioenclave, io_thread),
173 "I0");

174 #endif
175

176 LOG_INFO("Thread initialization done\n");

177 while (true){

178 secure_mintimer_usleep (300000) ;

179 }

180 LOG_INFO("Exiting main thread by shutting down CPU\n");
181 sched_shut_down () ;

182

183 UNREACHABLE () ;

184 return O;

185

Listing A.1: Source code of our case study implementation in C. Note that two
while-loops in 1.48 and 1.71 do have deterministic execution time unless there is
a hardware fault.
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Additional Resources for
Faulty Point Unit Attacks

B.1 Proof-of-concept Enclave Code

This appendix lists the C source code (Listing B.1) and compiled assembly
(Listing B.2) for the benchmark toy example enclave discussed in Section 3.3.2
and Table 3.1. The assembly code in Listing B.2 was output by gcc v7.4.0 under
Ubuntu 18.04.1 and the Intel SGX-SDK v2.7.1 using the default compilation
flags.

#include <stdint.h>

#include <math.h>

long double ecall_acosf (int a) {

return acosl(a);

}

long double ecall_mul(long double a, long double b) {
return ax*b;

}

© 0 N o U A W N e

Listing B.1: Code to perform basic floating-point operations inside the enclave.

1<ecall_acosf>:
push %rbp

2
3 mov %rsp,hrbp

4 sub $0x20 ,%rsp

5 MOV %edi,-0x4 (Yrbp)
6 fildl -0x4 (%rbp)

7 lea -0x10 (%rsp) ,%rsp
s fstpt (Jrsp)

137
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callqg 4450 <acosl>
add $0x10 ,%rsp
fstpt -0x20(%rbp)
mov -0x20 (%rbp) ,%rax
mov -0x18 (%rbp) ,%edx
mov %rax,-0x20 (%rbp)
mov %edx ,-0x18 (%rbp)
fldt -0x20 (%rbp)
leaveq
retq

<ecall_mul>:

push %rbp

mov %rsp,hrbp
fldt 0x10 (%rbp)
fldt  0x20 (%rbp)
fmulp Yst,%st (1)
pop hrbp

retq

Listing B.2: Compiled assembly of Listing B.1.

B.2 Search Algorithm Based on Overflow Excep-
tions

This appendix lists the additional Algorithm 2 to recover secrets for operands > 1.
It functions analogous to Algorithm 1 described in Section 3.4. We note that
for brevity, both Algorithm 1 and Algorithm 2 use standard floating-point

variables for secret recovery. However, if desired, these algorithm could be likely
re-written (although in a less clear manner) using the binary representation of
the double operands instead.
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Algorithm 2: Binary search algorithm to recover a secret value based on
overflow exceptions for operands > 1

Result: recovered secret
// Maximum representable double
max_ double = 1.7976931348623157e308;

low = 1;
high = max_ double;
cnt = 0;

while ¢nt < 100 do

mid = low / 2 + high / 2;

secret_ mul(mid);

recovered__secret = max_ double / mid;
cnt+-+;

if overflow exception raised then

// continue search in lower half

high = mid;

else
// continue search in upper half
low = mid;

end

end







Appendix C

Additional Resources for
Pandora

C.1 Pandora CLI and Report Generation (G4)

We designed Pandora with great care for usability (G4), through a well-
documented command line interface (CLI) and detailed HTML reports.
Figure C.1 shows an example of a human-readable, interactive HTML report
from the PTRSan plugin discovering unconstrained pointer dereferences in the
Linux selftest enclave (cf. Section 4.7.1). Figure C.2 shows a part of the
interactive command line interface of Pandora, which is intended to be highly
usable for both rapid prototyping of new plugins and for long, unattended
exploration runs. Issues are reported on the command line during a run, but
are also logged in a JSON file that can later be expanded into the fully-fledged
HTML reports visible in Figure C.1. If the human analyst wishes, multiple
breakpoints regarding the exploration and the plugins are readily available from
the command line, i.e., to interrupt execution on interesting events and switch
into a Python shell. This allows to quickly implement and troubleshoot plugins.
Lastly, several options of Pandora are, in addition to the CLI, exposed via
configuration files, allowing to define long-lasting analysis setups that can be
controlled by changing few program options.
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C.2 Static Analysis of Enclave Runtimes

This appendix describes optional support we added to Pandora to load enclave
binaries from selected runtimes with purely static analysis only, i.e., without
first requiring the SGX-TRACER dynamic memory extraction phase described in
Section 4.5. The difficulty in adequately supporting arbitrary enclave runtimes
in this way lies in parsing opaque enclave memory layout metadata from the
binary and loading SGX-specific data structures into the symbolic execution
memory after the executable and linkable format (ELF) file has been loaded.
Although inherently fragile and version-specific, we show that it is in principle
possible to implement such support entirely statically for three exemplary
runtime loaders.

While we consider some of these static loaders to be mature and satisfying our
truthful initial memory layout criterion (G1b), we note that this highly labor-
intensive static-analysis approach is evidently not runtime-agnostic (vs. G2).
Furthermore, even for the individual runtimes that are supported, the static-
analysis approach remains inherently fragile, as new versions of these runtimes
may completely break or change the way runtime-specific data structures are
utilized in the enclave.! Thus, we use our novel SGX-TRACER enclave memory
extractor approach as the default runtime-agnostic and truthful loader in
Pandora, as also used in the evaluation of Section 4.7.

Linux Selftest Enclave First, the Linux selftest enclave [145] is a minimal,
self-contained enclave that has a fixed memory layout, with the thread control
structure (TCS) always being stored at the start of the enclave range. This
makes it an ideal baseline runtime as no enclave initialization is necessary and
all relevant addresses are statically known at compile time. The Linux selftest
enclave serves as the foundation for Pandora’s unit-test validation framework,
discussed in Section 4.7.1.

Intel SGX SDK Second, the Intel SGX SDK [78] encodes all information for
the loading process in an additional ELF metadata section. Based on manual
analysis of the open-source code of the Intel SGX SDK enclave loader, we added
full support in Pandora to decode this opaque blob and extract the expected
locations of TCSs, stack and heap regions, and patches to initialize enclave
global data structures. We implemented mature support to perform these steps

1Examples of such changes in the past were versions 2.4, 2.14, and 2.17 of the Intel SGX
SDK when the internal _global_data_t C structure was modified which resulted in altered
offsets for the address of the enclave base address, a crucial piece of information to properly
resolve addresses inside the enclave.
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in Intel SGX SDK version 2.18.1 and also validated backwards compatibility
and added support for version-specific fields in versions 2.18 and 2.17.1.

SCONE Lastly, we show that, in principle, the static enclave loading approach
is even feasible without access to source code by implementing an elementary
(incomplete) static loader for the proprietary SCONE [16] runtime. Specifically,
we manually reverse engineered the enclave layout and location of TCS data
structures and thread-local memory using a debugger. Based on this partial
layout, our static loader inserts the required data structures into the symbolic
memory layout when loading the SCONE runtime binary ELF file.

C.3 Pandora Breakpoints

Table C.1 lists all enclave-aware breakpoints added by Pandora. To
accommodate various investigation scenarios, all breakpoints can be triggered
before and after the event happened, i.e., to investigate an event both before
or after it had an impact on a Pandora state. For example, Pandora memory
read breakpoint, similarly to angr memory read breakpoints, can be triggered
before the read has happened, exposing, among other, its address and size; or
after the read has happened, additionally exposing its value.

Table C.1: List of breakpoints added by Pandora. Plugins can hook these new
breakpoints, in addition to all legacy angr breakpoints, to investigate specific
events during exploration. All events can be hooked before and after they are
explored. Individual breakpoints may additionally expose specific arguments,
e.g., symbolic memory addresses and sizes.

Breakpoint event Triggered by Description

eenter Enclave (Re)entry A state is prepared to (re)enter the enclave
eexit SGX Instructions ~ An EEXIT ENCLU is executed
untrusted_mem_read Enclave Memory Reads that fully lie in untrusted memory
trusted_mem_read Enclave Memory Reads that fully lie in enclave memory
inside_or_outside_mem_read  Enclave Memory Reads that may lie in either region
untrusted_mem_write Enclave Memory Writes that fully lie in untrusted memory
trusted_mem_write Enclave Memory ~ Writes that fully lie in enclave memory

inside_or_outside_mem_write Enclave Memory Writes that may lie in either region
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C.4 Vulnerability Details

Table C.2 provides a more detailed breakdown of the vulnerable code locations
found by Pandora, as also summarized in Table 4.2 and discussed in Section 4.7.

Table C.2: Detailed evidence of Pandora finding and reproducing vulnerabilities
both in production and research runtimes, where the “depth” column lists
the number of basic blocks explored before the vulnerability (min—max); “L”
indicates the location (Entry, Initialization, Application) of the vulnerability;

and column “O7” indicates whether the vulnerability could have been found by
existing, state-of-the-art SGX symbolic-execution tools [12, 35].

o

Runtime Version Prod Src Plugin L Depth Inst Description

Newly found vulnerabilities in shielding runtimes (total 174 instances)

EnclaveOS 3.28 v X' ABISan E 8 1 MXCSR dependent timing X
EnclaveOS 3.28 v/ X' PIRSan E 1448 10 Compiler removed overflow check X
EnclaveOS 3.28 v/ X' PIRSan I 15495-15521 5 strlen on unconstrained ptr (CVE-2023-38022) X
EnclaveOS 3.28 v X' EPICSan I 14-100 33 Various SBDR issues (CVE-2023-38021) X
EnclaveOS 3.28 v X' cFsan 1 51 2 PIC jump before relocation X
GoTEE 014b35f X V PTRSan E/I 2-82 31  Various unconstrained pointers X
GoTEE 014b35f X v/ EPICSan E/I 2-82 18  Various SBDR/DRPW issues X
GoTEE 014b35f X V CFSan I 82 1 Unconstrained RET targets X
Gramine 1.4 vV vV AMBISan E 8 1 MXCSR dependent timing X
Intel SDK 2.15.1 v vV PTRSan I 29-30 2 Unconstrained pointer (CVE-2022-26509) X
Intel SDK 2.19 v/ EPICSan I 234 22 SBDR in enclave initialization X
- Occlum 0.29.4 v/ EPICSan I 17222 11 - SBDR inherited X
Linux selftest 5.18 X V ABISan E 1 1 Unsanitized AC/DF, MXCSR, and FPU X
L Inclavare  0.6.2 X vV ABISan E 1 1 L Missing sanitization on entry X
Linux selftest 5.18 X vV PTRSan A 4-7 5 Various unconstrained pointers X
L Inclavare  0.6.2 X V PTRSan A 8539 2 Unconstrained src/dst addresses in memcpy X
Linux selftest 5.18 X V CFSan A 5 1 PIC jump before relocation X
L Inclavare  0.6.2 X V CFsan E 3 1 Unsigned jump target comparison in ecall array X
Open Enclave 0.19.0 v v/ ABISan E 11 1 Unsanitized AC (regression) (CVE-2023-37479) X
Open Enclave 0.19.0 v vV ABISan E 11 1 MXCSR dependent timing X
Rust EDP 171 v vV ABISan E 7 1 MXCSR dependent timing X
SCONE 5.7.0 v X ABISan E 3 1 Unsanitized FPU (CVE-2022-46487) X
SCONE 5.7.0 v X PTRSan I 25-1827 10 Various pointer issues (CVE-2022-46486) X
SCONE 5.7.0 v X  EPICSan I 25-1827 11 Various SBDR/DRPW issues (CVE-2023-38023) X
Reproduced vulnerabilities in older versions (total 69 instances)

GoTEE 014b35f X V ABISan E 3 1 Unsanitized FPU [5] X
Gramine 1.2 v v/ EPICSan I 22-55 10 Various SBDR/DRPW issues X
Intel SDK 2.1.1 vV V ABISan E 3 1 Unsanitized DF/AC [157]; FPU [5] v
Intel SDK 2.13.3 v/ EPICSan I 207-6198 28  Various SBDR/DRPW issues X
Open Enclave 0.4.1 vV V ABISan E 4 1 Unsanitized DF [157] X
Open Enclave 0.4.1 v/ PTRSan [  402-1712 13 Unconstrained pointers [157] X
Open Enclave 0.4.1 v/ EPICSan I  442-1712 13 Various SBDR/DRPW issues X
Rust EDP 1.63 v /  EPICSan I 1041-1043 2 Various SBDR/DRPW issues X

Legend: T Not open source, but source code was made privately available; > Based on above
runtime.
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Report PointerSanitizationPlugin

Plugin description: Validates attacker-tainted pointer dereferences.

Analyzed 'pandora_selftest_enclave_sanitization3.elf', with 'Linux selftest enclave' enclave runtime. Ran for 0:00:12.758955 on 2023-08-03_19-16-58.

0 Enclave info: Address range is [0x0, Oxbfff]

A summary: Found 1 unique WARNING issue; 2 unique CRITICAL issues.

Report summary

Severity Reported issues
WARNING » Attacker tainted read inside enclave at 0x2476
CRITICAL * Unconstrained read at 0x22c3

« Unconstrained read at 0x20be

Report details (click to uncollapse)
DEBUG @ INFO € WARNING & ERROR @ CRITICAL
Vv Issues reported at 0x2476 @ cnclbody WARNING  Attacker tainted read inside enclave

V Issues reported at 0x22¢3 @ do_enclop_get.from_unmeasured

~ Unconstrained read RIP=0x223

Plugin extra info

Key Value

Address <BV64 0x3000 + ((attacker_mem_66_32({UNINITIALIZED} .. 0x1) << 0x3)>
Attacker tainted True

Length 8

Pointer range [0x3008, OxffFFFFF800003008]

Pointer can wrap address space False

Pointer can lie in enclave True

Extra info Read address may lie inside or outside enclave

Execution state info

Disassembly
CPU registers

Backtrace

Basic block trace (most recent first)

Constraints

Attacker constraints

V Issues reported at 0x20be @ memcpy

Figure C.1: Example of an HTML report generated by Pandora.
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./pandora.py run --help
Importing angr (this takes a second) 0:00:88

Usage: pandora.py run [OPTIONS] FILE_PATH

Shorthand for explore + report

Arguments

[ﬁk file_path FILE Path to the binary or log file to open [default: None] [required]

— Options
--config-file -c FILE Path to optional config file [default: None]
--log-level -1 [trace|det i The log level for pandora [default: info]
--angr-log-level [traceldebug I The log level for angr [default: critical]
--help Show this message and exit.

— Report generation
--report-level -L [trace|deb

error|critical] The level for pandora reports. Set to debug to
get all information.
[default: info]
--report 4 [html|log] Define the format for all plugin reports.
[default: html]

— Exploration options

--num-steps -n INTEGER Number of steps to execute in symbolic
execution. @ or negative allows to run to
completion.

[default: 180]

--plugins -p [defaultlalllabilptxlcfldbglaepic] Define the plugins to activate, separated
by a comma. Possible values for the plugin
key are:

= default -- Shorthand for
abi,ptr,cf,aepic

= all -- Shorthand for all plugins
= abi -- Validates CPU register
sanitizations.

= ptr -- Validates attacker-tainted
pointer dereferences.

= cf -- Detects attacker-controlled
jump targets.

~ dbg -- Debug plugin.

= aepic -- Validates MMIO buffer leaks

when interacting with untrusted memory.
[default: default]

--pandora-option TEXT Sets a specific advanced option via the
format option=value. Default values shown
below. Possible values for the option key

~ PANDORA_ENCLAVE_MIXIN_ENABLE

- True

~ PANDORA_EXPLORE_THREAD_COUNT
1

= PANDORA_EXPLORE_REENTRY_COUNT

]
= PANDORA_EXPLORE_DEPTH_FIRST

-- False
= PANDORA_EXPLORE_USE_LOOP_SEER
-- False
~ PANDORA_EXPLORE_LOOP_SEER_BOUND
-- 160
o
PANDORA_EXPLORE_ENABLE_SELFMODIFYING_CODE
-- False
~ PANDORA_REPORT_ONLY_UNIQUE
-- False
~ PANDORA_REPORT_OMIT_ATTACKER_CONSTRAINTS
-- False
[default: None]

--foxce-sdk -5 telllinux-selftest|open-enclavelscone|du Define the sdk to use. Overrides auto

0| auto] detection if set to a specific SDK.

[default: auto]

--action -a TEXT Adds an action bound to a specific event

Figure C.2: Part of the command line interface of Pandora depicting helpful
command options to the user.
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