

Trusted Execution with Real-Time and Availability Guarantees for Mixed-Criticality Embedded Systems

QA&TEST Safety and Security

<u>Fritz Alder</u>, Jo Van Bulck, Frank Piessens, Jan Tobias Mühlberg imec-DistriNet, KU Leuven, Belgium March 18, 2021

What?

Trusted Computing / Trusted Execution...

- Strong integrity protection and isolation for software components
- Software attestation: cryptographically bind a software to the executing hardware
- Sealed storage: bind data to attested software

... for mixed-criticality systems

- Effective isolation of different criticalities?
- Real-time and progress guarantees?
- What are interesting use cases?

Infrastructure needs to be developed with safety and security in mind! What is critical infrastructure? What is critical code? What's the impact of failure?

Vulnerabilities can hide anywhere: There are 150M lines of code in a modern car. Compartmentalisation can help with managing complexity.

Understanding can be really difficult: What stake holders are involved? What are their objectives and abilities? What hardware and software is involved? Software quality? Data flows? Security requirements and guarantees?

KIM ZETTER SECURITY 03.03.2016 07:00 AM

Inside the Cunning, Unprecedented Hack of Ukraine's Power Grid

The hack on Ukraine's power grid was a first-of-its-kind attack that sets an ominous precedent for the security of power grids everywhere.

Most devices are not new. Their connectivity is new!

Safety-Critical Systems Overview

Safety-Critical System

Mixed-criticality Systems Overview

Mixed-Criticality System

Mixed-criticality Systems – Who do we want to trust?

Desired trust

7 / 25 Trusted Execution with Real-Time and Availability Guarantees for Mixed-Criticality Embedded Systems

Mixed-criticality Systems – Who do we have to trust?

Actual trust for availability

- Monopolizing a system resource or stalling the CPU is often possible.
- Hackers do not cooperate.
- Even postponing deadlines can have harsh consequences.

Mixed-criticality Systems – What do we want?

Mixed-Criticality System

Secure Mixed-Criticality System

Comparing Hardware-Based TEEs

	ury istance								•	a atibility							
	150	olatin At	on test	ation alim	an Shan	nic for	koTridentia Confidentia Confidentia Confidentia Confidentia Confidentia	Rest prote	entw BCC	eist	ress NP	or inty neem	rCB ption phant	h Layout he Layout Backward	500 500 0	pen-	Source ademic ISA
AEGIS	•	•	•	٠	٠	0	•	0	0	٠	٠	٠	0	•	0	٠	-
ТРМ ТХТ) •	•	•	0 •	•	-	0	0	•	•	_	-	000	•	0	0	_ ×86_64
TrustZone	•	0	0	٠	0	0	0	0	0	0	٠	٠	0	•	0	0	ARM
Bastion	•	0	٠	٠	٠	0	•	0	0	0	٠	٠	٠	•	0	٠	UltraSPARC
SMART	0	٠	0	٠	0	-	0	٠	0	0	-	-	0	•	0	٠	AVR/MSP430
Sancus 1.0 Soteria Sancus 2.0	•	•	000	•	0 •	•	0000	•	000	•	0 0 0	000	0000	•	•	•	MSP430 MSP430 MSP430
SecureBlue++	•	0	٠	٠	٠	0	•	0	0	٠	٠	٠	0	•	0	0	POWER
SGX	•	•	٠	٠	٠	0	•	0	0	0	٠	٠	•	•	0	0	×86_64
Iso-X	•	٠	0	٠	0	0	•	0	0	0	٠	٠	٠	•	0	٠	OpenRISC
TrustLite	•	٠	0	0	0	٠	0	٠	0	0	٠	٠	٠	•	0	٠	Siskiyou Peak
TyTAN	•	٠	٠	٠	0	٠	0	٠	0	0	٠	٠	٠	•	0	٠	Siskiyou Peak
Sanctum	•	٠	٠	٠	٠	٠	0	0	0	0	٠	٠	٠	•	0	٠	RISC-V

Adapted from "Hardware-Based **Trusted Computing** Architectures for Isolation and Attestation ". Maene et al., IEEE Transactions on Computers, 2017.

 \bullet = Yes; \bullet = Partial; \bigcirc = No; - = Not Applicable

Secure Automotive Computing

Modern cars can be hacked!

- Network of more than 50 ECUs
- Multiple communication networks
- Remote entry points
- Limited built-in security mechanisms

Miller & Valasek, "Remote exploitation of an unaltered passenger vehicle", 2015

Secure Automotive Computing with Sancus

Modern cars can be hacked!

- Network of more than 50 ECUs
- Multiple communication networks
- Remote entry points
- Limited built-in security mechanisms

Miller & Valasek, "Remote exploitation of an unaltered passenger vehicle", 2015 Sancus brings strong security for embedded control systems:

- Message authentication
- Trusted Computing: software component isolation and cryptography
- Strong software security
- Applicable in automotive, ICS, IoT...

Secure Automotive Computing with Sancus

14 / 25 Trusted Execution with Real-Time and Availability Guarantees for Mixed-Criticality Embedded Systems

Trusted Execution: Reducing the Attack Surface

Mixed-Criticality System

With TEE

Trust for confidentiality and integrity

Trusted Execution: Reducing the Attack Surface

Mixed-Criticality System

With TEE

Trust for availability

18 / 25 Trusted Execution with Real-Time and Availability Guarantees for Mixed-Criticality Embedded Systems

We want security:

- Spacial isolation, memory curtaining, enclaves
- Enclave attestation
- Dynamic deployment

We want security:

- Spacial isolation, memory curtaining, enclaves
- Enclave attestation
- Dynamic deployment

We also want availability:

- ► Preemption
- Bounded atomicity
- Protected scheduler with dynamic policies

We want security:

- Spacial isolation, memory curtaining, enclaves
- Enclave attestation
- Dynamic deployment

We also want availability:

- Preemption
- Bounded atomicity
- Protected scheduler with dynamic policies

We want it all on a (cheap) light-weight IoT processor.

		Masti	TrustLite	TYTAN	SMARI	VRASE	Sancus	Aion
Spatia	al isolation							
SG1	Memory curtaining							
SG2	Enclave attestation	_	-	•	•	•		
SG3	Dynamic loading	-	-		-	-		
Temp	oral isolation							
AG1	Preemption	•		•	_	_	_	
AG2	Bounded atomicity		_	_	_	_	_	
AG3	Protected scheduler		-	-	_	-	-	۲
Architecture		AVR	l Siskiyou	I Peak	MSP-430 & AVR	M	ISP430	

....

-15

n D

Dependable Mixed-Criticality with TEEs

Sancus as a Starting Point

- Open-source hardware-only TEE
- Tiny footprint, low power, extends openMSP430

Dependable Mixed-Criticality with TEEs

Sancus as a Starting Point

- Open-source hardware-only TEE
- Tiny footprint, low power, extends openMSP430

Hardware Extensions

- Exception Engine facilitates interruption of (protected) threads
- Atomicity Monitor provides control over interrupts to scheduler, guarantees bounded critical sections

Dependable Mixed-Criticality with TEEs

Sancus as a Starting Point

- Open-source hardware-only TEE
- Tiny footprint, low power, extends openMSP430

Hardware Extensions

- Exception Engine facilitates interruption of (protected) threads
- Atomicity Monitor provides control over interrupts to scheduler, guarantees bounded critical sections

Trusted Software

Protected Scheduler controls interrupts and scheduling decisions

- We can guarantee an activation latency of 5228 cycles (291ns @ 20Mhz).
- What does this mean in practice?

- We can guarantee an activation latency of 5228 cycles (291ns @ 20Mhz).
- What does this mean in practice?
- High-Priority jobs can rely on strict interrupt arrival times.

- We can guarantee an activation latency of 5228 cycles (291ns @ 20Mhz).
- What does this mean in practice?
- High-Priority jobs can rely on strict interrupt arrival times.
- Low-Priority jobs can take over secondary tasks.

- We can guarantee an activation latency of 5228 cycles (291ns @ 20Mhz).
- What does this mean in practice?
- High-Priority jobs can rely on strict interrupt arrival times.
- Low-Priority jobs can take over secondary tasks.
- Attackers can only obtain priority levels up to the priority of their compromised job.

"... if the application produces a physical output event (e.g., turns on an LED), then there must have been physical input events such that, when processed by the application, the output event is produced ...",

"... if the application produces a physical output event (e.g., turns on an LED), then there must have been physical input events such that, when processed by the application, the output event is produced ...",

Mitigates Attacks

- Network-level attacks including modification and replay
- Direct interference of a strong software-level attacker

Dependable Execution of Event-Driven Applications

Events (e.g., a button pressed) are guaranteed to be processed with deterministic deadlines and priorities, such that

"... if the application produces a physical output event (e.g., turns on an LED), then there must have been physical input events such that, when processed by the application, the output event is produced ...",

and real-time requirements are respected.

Mitigates Attacks

- Network-level attacks including modification and replay
- Direct interference of a strong software-level attacker

KULEUVE

Dependable Execution of Event-Driven Applications

Events (e.g., a button pressed) are guaranteed to be processed with deterministic deadlines and priorities, such that

"... if the application produces a physical output event (e.g., turns on an LED), then there must have been physical input events such that, when processed by the application, the output event is produced ...",

and real-time requirements are respected.

Mitigates Attacks

- Network-level attacks including modification and replay
- Direct interference of a strong software-level attacker
- ► Temporal resource monopolisation by a software-level attacker

What can we do with it?

- Secure critical sensing and control
- Share platform for components with different criticality
 - Visualisation and user feedback
 - Monitoring or intrusion detection
- Can be integrated with heterogeneous environments.

Summary

Trusted Execution Environments

 Strong application isolation and attestation: hardware-level security and taming complexity

Sancus (Try it out: https://distrinet.cs.kuleuven.be/software/sancus/)

- Light-weight, hardware-only, open-source TEE
- Built upon openMSP430 16-bit MCU, applications in IoT and embedded control systems
- Now with real-time and availability support

Exciting Use Cases

- Strong security and availability for control systems
- Mixed-criticality with safety functions on same platform

Image sources

- https://internetofthingsagenda.techtarget.com/definition/smart-city
- https://medium.com/connected-news/ iot-foundation-what-is-an-iot-platform-c37c5e72d4a0
- https://www.wired.com/2016/03/ inside-cunning-unprecedented-hack-ukraines-power-grid/
- https://unsplash.com/photos/kEP-zO-w4nE
- https://www.freepik.com/macrovector
- https://unsplash.com/photos/OtbkhHNWjgc
- https://www.freepik.com/free-photo/ interior-warehouse-logistic-center-have-agv-robot-arm_9316667.htm