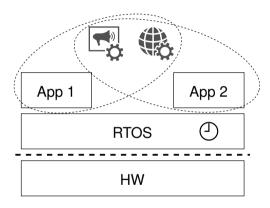

Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Online

CCS '21

<u>Fritz Alder</u>, Jo Van Bulck, Frank Piessens, Jan Tobias Mühlberg imec-DistriNet, KU Leuven November 17, 2021

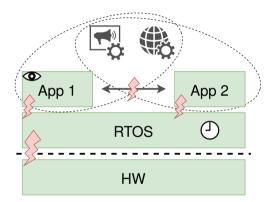
Embedded system overview



Embedded system

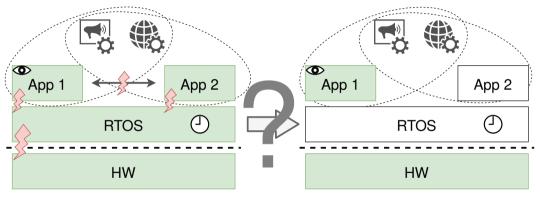
1 / 21 AION: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Modern and open system overview



Open system

1 / 21 AION: Enabling Open Systems through Strong Availability Guarantees for Enclaves


Modern and open system – Who do we have to trust?

TCB for availability in open system

- Monopolizing a system resource or stalling the CPU is often possible.
- Hackers do not cooperate.
- Even postponing deadlines can have harsh consequences.

Modern and open system – What do we want?

TCB for availability in open system

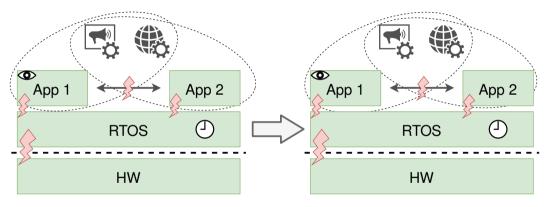
With TEE?

3 / 21 AION: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Trusted Execution Environments: A castle inside the processor

the next

Trusted Execution Environments: Only allow strictly defined access

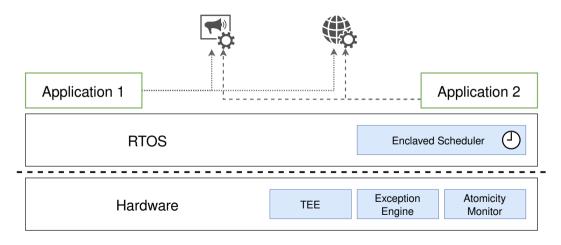

Trusted execution: Good for confidentiality and integrity

TCB for confidentiality/integrity in open system

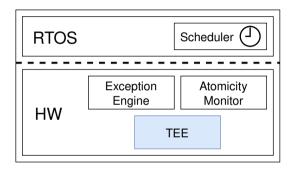
Good spatial isolation with TEEs

Trusted execution: Not good for availability

TCB for availability in open system

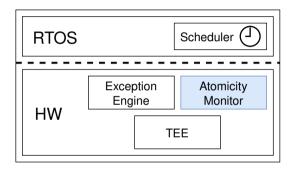

No temporal isolation with current TEEs

Aion Contributions in Short


- Security architecture that extends TEEs with guarantees on enclave availability, even in the presence of software adversaries.
- Progress and real-time guarantees can be offered to a number of applications of the same priority.
- **Decoupling** of availability guarantees from confidentiality and integrity guarantees.
- Prototype implementation with the RIOT OS and Sancus.

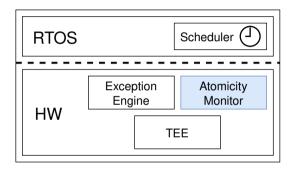
Aion Architecture Overview

Aion Design – TEE

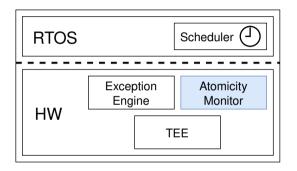

- Build on existing TEEs for:
 - isolation
 - attestation
 - dynamic enclave deployment
- TEE violations should not reset the system!

Aion Design – Exception handling

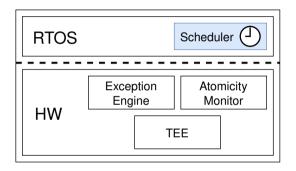
- Securely interrupt enclaves
- Do not trust software handlers with enclave data
- Instead, perform context save in hardware and context restore in Software
- Similar procedure for violations!
- Afterwards, jump to strictly defined handlers.


Aion Design – Atomicity

Disallow atomicity

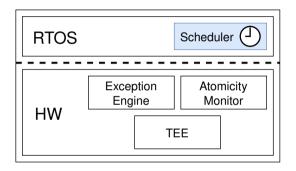

Aion Design – Atomicity

- Disallow atomicity
- …except for bounded time periods



Aion Design – Atomicity

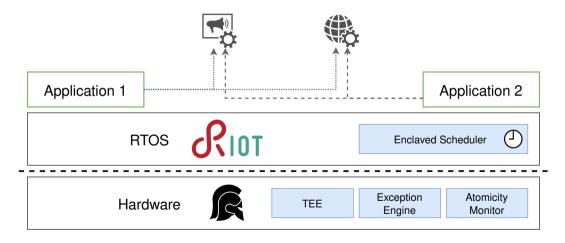
- Disallow atomicity
- ...except for bounded time periods
- clix instruction allows to disable interrupts for x cycles
- After that, interrupts will be triggered again!


Aion Design

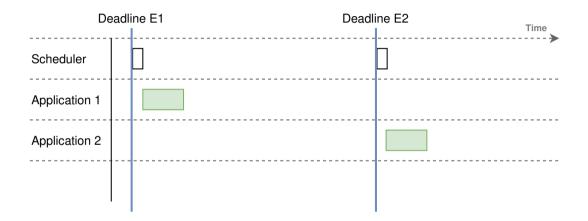
- Protect scheduler via an enclave
- Ensure all interrupts are handled by the Scheduler
- Allow only the scheduler to disable interrupts completely without clix

 \rightarrow Scheduler is in complete control over platform availability

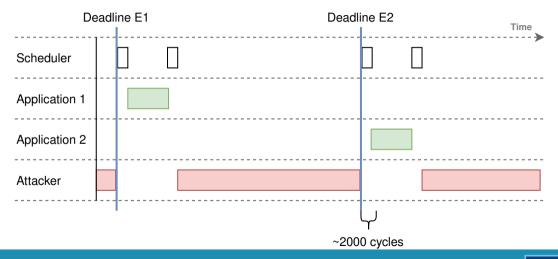
Aion Design



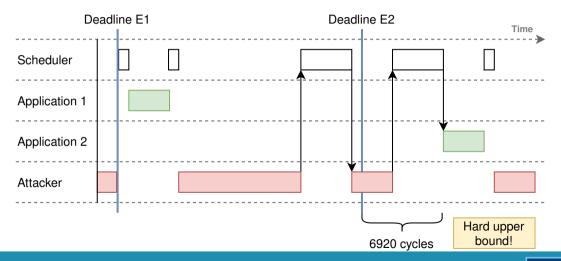
- Protect scheduler via an enclave
- Ensure all interrupts are handled by the Scheduler
- Allow only the scheduler to disable interrupts completely without clix


 \rightarrow Scheduler is in complete control over platform availability

Scheduler can perform guaranteed scheduling for dynamic enclaves even in presence of software adversaries.


Aion Prototype Implementation

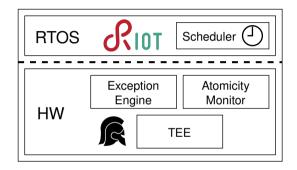
Aion Results – Case study with activation deadlines



Aion Results – Activation deadlines under attack

15 / 21 AION: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Aion Results – Activation deadlines worst case attack


15 / 21 AION: Enabling Open Systems through Strong Availability Guarantees for Enclaves

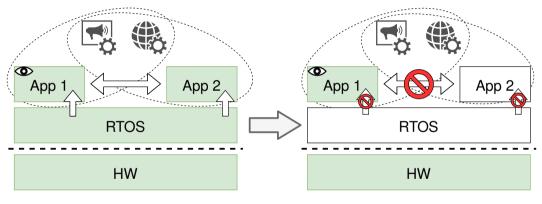
Aion Limitations

- Aion only guarantees an Interrupt Arrival Time of 6920 cycles
- After this, the handling job starts to execute with its own atomically bounded periods
 - \rightarrow Guaranteeing progress is not trivial!
- Right now: Progress = clix bound (1000 cycles)

Conclusion

- Extend TEE architectures with an Exception Engine and an Atomicity Monitor to enable a Protected Scheduler.
- Our implementation provides deterministic scheduling and trusted time, even in the presence of strong software adversaries.

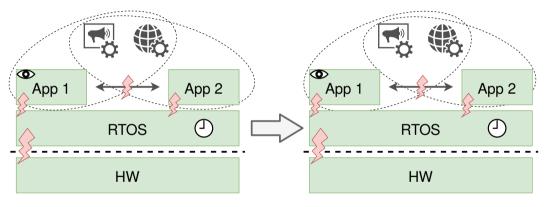
Aion can <u>guarantee</u> interrupt arrival latencies of 6920 cycles (346ns @ 20Mhz). Full source code online here: https://github.com/sancus-tee/sancus-riot


Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Online

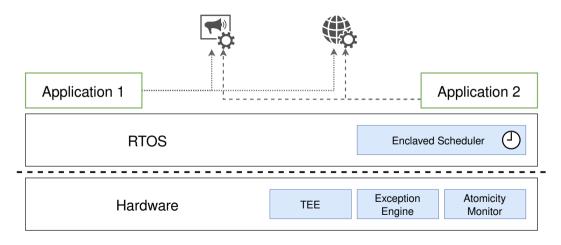
CCS '21

<u>Fritz Alder</u>, Jo Van Bulck, Frank Piessens, Jan Tobias Mühlberg imec-DistriNet, KU Leuven November 17, 2021

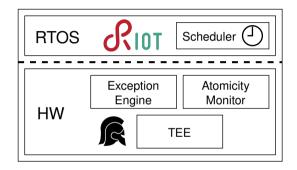

Trusted execution: Good for confidentiality and integrity

TCB for confidentiality/integrity in open system

Good spatial isolation with TEEs


Trusted execution: Not good for availability

TCB for availability in open system


No temporal isolation with current TEEs

Aion Architecture Overview

Aion summary

- Extend TEE architectures with an Exception Engine and an Atomicity Monitor to enable a Protected Scheduler.
- Our implementation provides deterministic scheduling and trusted time, even in the presence of strong software adversaries.

Aion can <u>guarantee</u> interrupt arrival latencies of 6920 cycles (346ns @ 20Mhz). Full source code online here: https://github.com/sancus-tee/sancus-riot