
Aion technical talk Published at CCS ’21

Aion: Enabling Open Systems through Strong
Availability Guarantees for Enclaves

Fritz Alder, Jo Van Bulck, Jan Tobias Mühlberg, Frank Piessens
imec-DistriNet, KU Leuven
October 19, 2021

Embedded system overview

App 1

RTOS

HW

Embedded system

1 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Modern and open system overview

App 1

RTOS

App 2

HW

Open system

1 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Modern and open system – Who do we have to trust?

App 1 App 2

RTOS

HW

TCB for availability
in open system

I Monopolizing a system resource or
stalling the CPU is often possible.

I Hackers do not cooperate.
I Even postponing deadlines can

have harsh consequences.

2 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Modern and open system – What do we want?

App 1 App 2

HW
? RTOS

TCB for availability
in open system

With TEE?

App 1 App 2

RTOS

HW

3 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Trusted Execution Environments: A castle inside the processor

Trusted Execution Environments: Only allow strictly defined access

Trusted execution: Good for confidentiality and integrity

App 1 App 2

RTOS

HW

App 1 App 2

RTOS

HW

TCB for confidentiality/integrity
in open system

Good spatial isolation
with TEEs

6 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Trusted execution: Not good for availability

App 1 App 2

RTOS

HW

App 1 App 2

RTOS

HW

TCB for availability
in open system

No temporal isolation
with current TEEs

7 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Aion Contributions in Short

I Security architecture that extends TEEs with guarantees on enclave
availability, even in the presence of software adversaries.

I Progress and real-time guarantees can be offered to a number of
applications of the same priority.

I Decoupling of availability guarantees from confidentiality and integrity
guarantees.

I Prototype implementation with the RIOT OS and Sancus.

8 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Aion Architecture Overview

Application 1

TEE

Application 2

Exception
Engine

Atomicity
MonitorHardware

Enclaved SchedulerRTOS

9 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Aion Design – TEE
I Aion builds on embedded TEE architectures for isolation,

attestation, and dynamic enclave deployment.

I Sancus is a suitable candidate (16-bit, OSS, simple architecture).

I Additional TEE features required by Aion:
• Interruptible/restartable cryptographic operations
• Security policy violations can not reset the system but must clear the
CPU state without side-effects.

10 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

TEE

SchedulerRTOS

HW

Exception
Engine

Atomicity
Monitor

Aion Design – TEE
I Aion builds on embedded TEE architectures for isolation,

attestation, and dynamic enclave deployment.

I Sancus is a suitable candidate (16-bit, OSS, simple architecture).

I Additional TEE features required by Aion:
• Interruptible/restartable cryptographic operations
• Security policy violations can not reset the system but must clear the
CPU state without side-effects.

10 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

TEE

SchedulerRTOS

HW

Exception
Engine

Atomicity
Monitor

Aion Design – Exception Engine
I Goal: Securely interrupt enclaves and pass control

to the scheduler.
I Two possible types of exceptions are handled:
• Interrupts of peripherals (timer, sensors, etc)
• Violations of security or availability policies

I But: Do not fully trust the scheduler. Saving and restoring context is
done by hardware and application enclaves respectively.

11 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

TEE

SchedulerRTOS

HW

Exception
Engine

Atomicity
Monitor

Aion Design – Atomicity Monitor
I Goal: Only the scheduler should be in full control

over the availability of the platform.

I Disabling interrupts should not be possible.

..but atomic sections are
necessary!

I Introduce instruction for bounded atomicity (clix).

I Nesting or exceeding allowed clix length results in atomicity violations.

I Enclave entries are difficult!

12 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

TEE

SchedulerRTOS

HW

Exception
Engine

Atomicity
Monitor

Aion Design – Atomicity Monitor
I Goal: Only the scheduler should be in full control

over the availability of the platform.

I Disabling interrupts should not be possible...but atomic sections are
necessary!

I Introduce instruction for bounded atomicity (clix).

I Nesting or exceeding allowed clix length results in atomicity violations.

I Enclave entries are difficult!

12 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

TEE

SchedulerRTOS

HW

Exception
Engine

Atomicity
Monitor

Aion Design – Scheduler
I Goal: Deterministic and timely response to events.
I Previous modules:
• TEE: Enclaves ensure spatial isolation of applications.
• Exception Engine: All events reach their handler without security compromise.
• Atomicity Monitor: Bound atomicity to limit latency of event → event handler.

I Enclaved Scheduler is registered as handler for all interrupt types.
I But: Scheduler is not trusted for confidentiality
→ Must not have access to peripheral data or MMIO data region.

Result: Scheduler handles all events after a bounded time delay.
Guaranteed by hardware.

13 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

TEE

SchedulerRTOS

HW

Exception
Engine

Atomicity
Monitor

Aion Design – Scheduler
I Goal: Deterministic and timely response to events.
I Previous modules:
• TEE: Enclaves ensure spatial isolation of applications.
• Exception Engine: All events reach their handler without security compromise.
• Atomicity Monitor: Bound atomicity to limit latency of event → event handler.

I Enclaved Scheduler is registered as handler for all interrupt types.
I But: Scheduler is not trusted for confidentiality
→ Must not have access to peripheral data or MMIO data region.

Result: Scheduler handles all events after a bounded time delay.
Guaranteed by hardware.

13 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

TEE

SchedulerRTOS

HW

Exception
Engine

Atomicity
Monitor

TCB for Availability – Before Aion

TCB for availability in
TEEs without Aion

App 1 App 2

RTOS

HW

14 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

TCB for Availability – With Aion

TCB for availability in
TEEs without Aion

TCB for availability
with Aion

App 1 App 2

RTOS

HW

App 1 App 2

Aion Additions

Scheduler

Hardware

RTOS

14 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Aion Prototype Implementation

Application 1

TEE

Application 2

Exception
Engine

Atomicity
MonitorHardware

Enclaved SchedulerRTOS

15 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Aion Results – Case study with activation deadlines

Scheduler

Application 1

Application 2

Deadline E1 Deadline E2
Time

16 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Aion Results – Case study with activation deadlines

Scheduler

Attacker

Deadline E1 Deadline E2

~2000 cycles

Time

Application 1

Application 2

16 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Aion Results – Activation deadlines under attack

Scheduler

Attacker

Deadline E1 Deadline E2

~3500 cycles

Time

Application 1

Application 2

16 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Aion Results – Activation deadlines worst case attack

Scheduler

Attacker

Deadline E1 Deadline E2

6920 cycles

Hard upper
bound!

Time

Application 1

Application 2

16 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Aion Limitations

I Aion only guarantees an Interrupt Arrival Time of 6920 cycles
I After this, the handling job starts to execute with its own atomically

bounded periods
→ Guaranteeing progress is not trivial!

I Right now: Progress = clix bound (1000 cycles)
I Future work: Let scheduler mask interrupts/disable interrupts for

high-priority events
I Additionally: Restartable crypto needed! Interrupting crypto

operations that exceed clix length have no chance in the presence of
adversaries

17 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Aion Limitations

I Aion only guarantees an Interrupt Arrival Time of 6920 cycles
I After this, the handling job starts to execute with its own atomically

bounded periods
→ Guaranteeing progress is not trivial!

I Right now: Progress = clix bound (1000 cycles)
I Future work: Let scheduler mask interrupts/disable interrupts for

high-priority events

I Additionally: Restartable crypto needed! Interrupting crypto
operations that exceed clix length have no chance in the presence of
adversaries

17 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Aion Limitations

I Aion only guarantees an Interrupt Arrival Time of 6920 cycles
I After this, the handling job starts to execute with its own atomically

bounded periods
→ Guaranteeing progress is not trivial!

I Right now: Progress = clix bound (1000 cycles)
I Future work: Let scheduler mask interrupts/disable interrupts for

high-priority events
I Additionally: Restartable crypto needed! Interrupting crypto

operations that exceed clix length have no chance in the presence of
adversaries

17 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Conclusion

I Extend TEE architectures with an
Exception Engine and an
Atomicity Monitor to enable a
Protected Scheduler.

I Our implementation provides
deterministic scheduling and
trusted time, even in the
presence of strong software
adversaries.

TEE

SchedulerRTOS

HW

Exception
Engine

Atomicity
Monitor

Aion can guarantee interrupt arrival latencies of 6920 cycles (346ns @ 20Mhz).

18 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Weblinks

I Link to paper: https://falder.org/files/paper/2021_aion.pdf
I GitHub repository with all code, case study, and hardware changes:

https://github.com/sancus-tee/sancus-riot

19 / 19 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

https://falder.org/files/paper/2021_aion.pdf
https://github.com/sancus-tee/sancus-riot

Backup slides

Open system – Security and availability requirements

I Bounded activation latency
I Guaranteed progress
I Guaranteed device access
I Safety independence
I No trust hierarchy

Application 1

Application 2

Temperature
sensor

Communication
interface

Check temperature
sensor every second

Send out alerts

Access same
resources

2 / 11 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Open system – Security and availability requirements

I Bounded activation latency
I Guaranteed progress

I Guaranteed device access
I Safety independence
I No trust hierarchy

Application 1

Application 2

Temperature
sensor

Communication
interface

Check temperature
sensor every second

Send out alerts

Access same
resources

2 / 11 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Open system – Security and availability requirements

I Bounded activation latency
I Guaranteed progress
I Guaranteed device access
I Safety independence
I No trust hierarchy

Application 1

Application 2

Temperature
sensor

Communication
interface

Check temperature
sensor every second

Send out alerts

Access same
resources

2 / 11 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Masti Trus
tLite

TyT
AN

Sanc
us

Aion

Bounded activation latency Ë – – –

Ë

Guaranteed progress G# G# G# G#

Ë

Guaranteed device access Ë G# G# G#

Ë

Safety independence – – – –

Ë

No trust hierarchy – – – –

Ë

Architecture AVR | Siskiyou Peak | MSP430 |

3 / 11 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Masti Trus
tLite

TyT
AN

Sanc
us

Aion

Bounded activation latency Ë – – – Ë

Guaranteed progress G# G# G# G# Ë

Guaranteed device access Ë G# G# G# Ë

Safety independence – – – – Ë

No trust hierarchy – – – – Ë

Architecture AVR | Siskiyou Peak | MSP430 |

3 / 11 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Aion Results – Scheduler operations

Scheduler operation Best case (cycles) Worst case (cycles)

Create job 688 860
Exit job 512 736
Sleep 1124 1320
Yield 424 628
Get time 212

Table: Detailed overhead in cycles for the operations provided by the scheduler.

4 / 11 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Aion Results – Scheduler delay

Task/Stage Best case (cycles) Worst case (cycles)

1. Interrupt arrival 0 10 + clix + 1320
2. Interrupt processing 7 (35)
3. Scheduler entry 157 (115)
4.1 Timer 1356 4075
4.2 Scheduler run 443 443
5 Scheduler resume 72 72

Activation latency 2035 5920 + clix

Table: Detailed overhead in cycles for an event that preempts a running job. Shown are
measurements with default Aion parameters and the overheads in the best and worst case.

5 / 11 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

Aion Design – Exception Engine

I Distinguish between exception
types

I Distinguish between protection
modes:
• Unprotected: Default bahvior
• Enclave: Push to TCS

I Put violation marker in CPU state
if enclave is resumed later

I Do not store violations in TCS if
interrupts are disabled

Exception
type?

Interrupts
enabled?

Push CPU state to enclave
Mark enclave as interrupted

Clear CPU state

Get exception handler

Pass control to handler

Executing
enclave?

Push program counter
and platform-dependent
state registers to stack

Violation Interrupt

No Yes

Yes

No

Mark violation in
CPU state

6 / 11 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

TEE

SchedulerRTOS

HW

Exception
Engine

Atomicity
Monitor

Aion Design – Atomicity Monitor

(a) clix disables interrupts for x cycles
Clock

instruction clix 2 Inst 1 Inst 2 Inst 3

interrupts enabled

(b) Nested clix result in atomicity violation
instruction clix 10 Inst 1 clix 10 ATOM_VIOL

interrupts enabled

(c) Interrupts are disabled on enclave entries
instruction j Entry Inst 1 Inst n Inst n+1

interrupts enabled
enclave entry

atomic entry period

(d) Use clix after enclave entries
Clock

instruction j Entry Inst 1 clix 10 Inst 2

interrupts enabled
enclave entry

atomic entry period

(e) Prolonging atomic entries gives violation
instruction j Entry Inst 1 j Entry ATOM_VIOL

interrupts enabled
enclave entry

atomic entry period

7 / 11 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

TEE

SchedulerRTOS

HW

Exception
Engine

Atomicity
Monitor

enter_enclave
(set e)

clix (set c)
Unprotected

GIE = 1

clix (set c)

[e == 0]

enter_enclave

enter_enclave
(set e)

Enclave
entry

clix,
enter_enclave

[c == 0]

eint (set c = 0)
Unprotected
inside clix

Violation

enter_unprot

Scheduler
GIE = 0

eint (set c = 0)

clix,
enter_enclave

[c == 0]

enter_unprot
(c--)

Enclave
inside clix

enter_enclave
(set e)

clix (set c)enter_unprot

Enclave
GIE = 1

initial state

State transitions:
- clix
- eint
- dint
- enter_unprot
- enter_sched
- enter_enclave
- other

Variables:
e = Counter for atomic enclave entry
c = Counter for clix
Legend:

Transition on a with side effect b

Automatic transition on condition a

eint,
other
(c--)

eint,
dint,
other
(e--)

eint,
dint,
other

enter_unprot

eint,
dint,
enter_unprot,
other

enter_sched
(set c = 0)

dint,
other
(c--)

a (b)

[a]

clix,
eint,
dint,
other

Atomicity
States

TEE

SchedulerRTOS

HW

Exception
Engine

Atomicity
Monitor

Sancus Background
Extends openMSP430 with strong security primitives
I Software Component Isolation
I Cryptography & Attestation
I Secure I/O through isolation of

MMIO ranges
I Efficient, Modular, ≤ 2 kLUTs
I Cryptographic key hierarchy for

software attestation
I Isolated components are typically

very small (< 1kLOC)

Register file

ALU

Execution unit

MAL

Layout

Key

SM1

SM control

MAL

Layout

Key

SM2

Sancus CPU core

M
em

or
y

ba
ck

bo
ne

Spongent

SpongeWrap

Crypto unit

N
od

e
ke

y

RAM
or

ROM

RAM

Peripherals

Frontend

PC

Program memory interface

Data memory interface

Peripheral bus

M
A
B

M
A
B

Violation

Ke
y

&
la
yo

ut
da

ta

Re
gi
st
er
s

Registers

V
io
la
tio

n

Sancus is Open Source: https://distrinet.cs.kuleuven.be/software/sancus/

9 / 11 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

TEE

SchedulerRTOS

HW

Exception
Engine

Atomicity
Monitor

https://distrinet.cs.kuleuven.be/software/sancus/

Aion Prototype – Sancus

Sancus Modifications:
I Preemptive enclaves
I Interruptible crypto (restartable)
I Threading via software TCS
I Violations abort and clear state
I Adding two flags to status register:

1 ’IRQ interrupted enclave’ flag
2 ’Violation marker’ as per

exception engine design
I SM ID 1 is privileged for CPUOFF

and other relevant flags

Register file

ALU

Execution unit

MAL

Layout

Key

SM1

SM control

MAL

Layout

Key

SM2

Sancus CPU core

M
em

or
y

ba
ck

bo
ne

Spongent

SpongeWrap

Crypto unit

N
od

e
ke

y

RAM
or

ROM

RAM

Peripherals

Frontend

PC

Program memory interface

Data memory interface

Peripheral bus

M
A
B

M
A
B

Violation

Ke
y

&
la
yo

ut
da

ta

Re
gi
st
er
s

Registers

V
io
la
tio

n

10 / 11 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

TEE

SchedulerRTOS

HW

Exception
Engine

Atomicity
Monitor

Aion Prototype – RIOT
I Open-source OS for the IoT, running on 16-bit Sancus
I Supports real-time applications on resource-constrained devices
I Tickless, cooperative O(1) scheduling
I Highly modular, based on FreeRTOS

Aion modifications:
I Scheduler and timer peripheral protected in enclave
I Scheduler is non-interruptible
I Dynamic scheduling, e.g., only attested enclaves can get highest priority
I Fixed amount of priorities, threads and set timers

11 / 11 Aion: Enabling Open Systems through Strong Availability Guarantees for Enclaves

TEE

SchedulerRTOS

HW

Exception
Engine

Atomicity
Monitor

	Background
	Design
	Implementation
	Additional
	Appendix
	Requirements

