About Time: On the Challenges of Temporal

Guarantees in Untrusted Environments

Fritz Alder, Gianluca Scopelliti, Jo Van Bulck, Jan Tobias Miihlberg
SysTEX, May 08, 2023 — or is it?

- UNIVERSITE

4

- LIBRE
ERICSSON DE BRUXELLES

A imec-DistriNet, KU Leuven

https://distrinet.cs.kuleuven.be/people/FritzAlder

Trusted Execution Environments: Enclave calls

- EENTER

Trusted Execution Environments: Enclave calls

- EENTER

v

Use case 1: Rate limiting

>» —4+—01 01,
~O

(0

Use case 1: Rate limiting

> ——01
s 108
0=
01
v 1c®

Use case 1: Rate limiting

W > — 01
. 0 108

01

\/11:

Use case 1: Rate limiting

> ——01

9 C J 108
O

<

Use case 1: Rate limiting

> ——01
9 108

[
S e
x‘O&L

Use case 2: Certificate validity check

Use case 2: Certificate validity check

Use case 2: Certificate validity check

Use case 2: Certificate validity check

Problem: Enclaves need help with time!

Problem: Enclaves need help with time!

2023-05-08
L 15:38:59

85"

J

TEE Time

e Uses of time are common:

e Certificate validity check
e Rate limiting
e Time-based policies, resource counting, DRM, ...

e Enclaves have no direct access to a clock

-» Time comes from or passes through the untrusted environment

Getting reliable wall-clock time is hard!

To: No guarantees on time

>

Getting reliable wall-clock time is hard!

To: No guarantees on time

2023 2024

L 4

—&—gEy—d >

>

To

Getting reliable wall-clock time is hard!

To: No guarantees on time

2023 2024 2025

L 4

L

é’ 4
— i —gm—d

>

3 i—mm—

I

Getting reliable wall-clock time is hard!

T;: Time monotonically advances

>

Y]

Getting reliable wall-clock time is hard!

T;: Time monotonically advances

2023 2024 2025

L 4

L

r—‘i |
Y]

>

—i—Em—

Getting reliable wall-clock time is hard!

T,: Time moves at constant pace

_l'_m >

2

i w T @

To

\

Getting reliable wall-clock time is hard!

T,: Time moves at constant pace

2024 2025

Getting reliable wall-clock time is hard!

T3: Time is read with known delay

2023

——em—&

2024 IRQ 2025

-6 - -em—

i w

Getting reliable wall-clock time is hard!

T4: use of time is atomic

2023 2024 2025

32323

PN

Overview of time levels

Type Rollback Freq. Delay Interrupt Example time source

Ty Untrusted OS

T, v Untrusted OS + check

T, v v ME, timer thread, remote server
T, v v v Secure TSC, MMIO timer

T, v v v v Trusted scheduler

What time level do use cases

require?

> —01 |
eIl 108

~O
O

Pt

e 1\

J

T No rollback
T, Consistent frequency

T3 Known delay

T4 Interrupt prevention

Certificate Validity: T,

a— |
@
t)

J

T No rollback
T, Consistent frequency

T3 Known delay

T4 Interrupt prevention

10

Intel SGX

Intel SGX — On Windows

4.6 Trusted Time Service Architecture

As discussed in Section 3.2, for trusted time service, the PSE uses the CSME Protected Real-Time Clock
(PRTC) based timer, and provides a timer source epoch to allow application enclaves to detect timer
discontinuity. A high-level view of the architecture for the trusted time service is shown in Figure 7.

Timer value, | |
Timer Source Epoch ITimer value,|

PSE <

I
I
I
I
I
I
CSME < PRTC I
I
I
I
I
I

Figure 7 High-level Architecture for Trusted Time Service

T No rollback

. T [f
e Monotonic counter but can be delayed 2 Consistent frequency

T3 Known dela
> T, 3 v

T4 Interrupt prevention

Source: Trusted Time and Monotonic Counters with Intel Software Guard Extensions Platform 11

Intel SGX — On Linux

RDTSC and RDTSCP are legal inside an enclave for processors that support SGX2 (subject to the value of
CR4.TSD). For processors which support SGX1 but not SGX2, RDTSC and RDTSCP will cause #UD.

RDTSC and RDTSCP instructions may cause a VM exit when inside an enclave.

Software developers must take into account that the RDTSC/RDTSCP results are not immune to influences by other
software, e.g., the TSC can be manipulated by software outside the enclave.

e RDTSC can be trapped by the adversary

e Arbitrary modifications are undetectable for the enclave

>T

T1 No rollback
T, Consistent frequency

T3 Known delay

Intel 64 and IA-32 Architectures Software Developer Manual March 2023 — Volume 3, Section 36.6.1 T4 Interru pt prevention

12

Intel SGX — In the future

CHAPTER 8

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER
LEAF FUNCTION

8.1 INTRODUCTION

Asynchronous Enclave Exit Notify (AEX-Notify) is an extension to Intel® SGX that allows Intel SGX enclaves to be
notified after an asynchronous enclave exit (AEX) has occurred. EDECCSSA is a new Intel SGX user leaf function

e AEX-Notify will make an enclave aware when it was interrupted

e If never interrupted, the enclave can rely on RDTSC
T No rollback

9 T4 (If uninterruptability is feasible for deployment) .
T, Consistent frequency

T3 Known delay

T4 Interrupt prevention

Source: Intel Architecture Instruction Set Extensions and Future Features v47

13

Intel SGX ecosystem

SDK OE EDP Gramine LKL Occlum Mystikos Ego Enarx

_/TZ TO>l< TO Tl Tl TO* TO Tl TO

14

https://github.com/intel/linux-sgx/releases/tag/sgx_2.8
https://cdrdv2-public.intel.com/671508/sgx-sdk-developer-reference-for-windows-os.pdf
https://github.com/openenclave/openenclave/blob/cd72fd7069488ba6f453c8f5f47bd9fd9a6e6c0d/enclave/core/time.c#L8
https://github.com/fortanix/rust-sgx/blob/a7ee253352856b35e54be22c505775c6556ffa82/intel-sgx/enclave-runner/src/usercalls/mod.rs#L1555
https://github.com/gramineproject/gramine/issues/595
https://github.com/lsds/sgx-lkl/blob/b6e838e0034de86b48470b6a6bf87d2e262e65c9/src/enclave/enclave_timer.c#L29
https://github.com/occlum/occlum/blob/500ca21d527f700d458df10b891948627f396d97/src/libos/src/time/mod.rs#L76
https://github.com/deislabs/mystikos/blob/7ce616416a310aabb543517ed3a9625c1f4acb70/kernel/itimer.c#L32
https://github.com/edgelesssys/edgelessrt/blob/9191ff25a0424d21a22c85eb12b09ebe5f407c3f/src/ertlibc/time.cpp#L53
https://github.com/enarx/enarx/blob/4c1d3db4039e1f2af4b251a202e64a2cdc0729fb/crates/sallyport/src/guest/call/syscall/clock_gettime.rs#L16

Other Trusted Hardware
Platforms / TEEs

Trusted Platform Module (TPM) — 2 timers: Clock and Time

36 Timing Components

36.1 Introduction
The TPM has timing components for use in time-stamping of attestations and for gating policy

Time is a free-running hardware value that is not under software control. Time advances when the Time
circuit is powered and is reset to zero when power to the Time hardware is lost.

NOTE 1 Typically, the Time hardware will be powered down when the rest of the TPM is powered down.

Clock is a value that is derived from Time and advances as Time advances. Clock may be advanced in
order to bring it into alignment with real time. However, Clock may not be set back except by installing a
new owner.

Source: Trusted Platform Module Library Part 1: Architecture. Level 00 Revision 01.59. Section 36.
15

Trusted Platform Module (TPM) — 2 timers: Clock and Time

The value of Clock may be set forward by external software (TPM2_ClockSet()) to compensate for power
interruptions or clock slew, but, except for changes in ownership (TPM2_Clear()), the TPM will not allow
external software to set Clock backward.

The value of Clock may be advanced by TPM2_ClockSet() using either platform or owner authorization.

NOTE The value of Clock may not be advanced beyond FF FF 00 00 00 00 00 004s. Thjs restriction
prevents any possibility of Clock rolling over during its lifetime and simplifies use of Clock in
policies.

e Clock advances monotonically

e Can be advanced by the attacker T No rollback
5T, 1 No rollbac

T, Consistent frequency
T3 Known delay

Source: Trusted Platform Module Library Part 1: Architecture. Level 00 Revision 01.59. Section 36. T4 Interru pt preVent|On

15

Trusted Platform Module (TPM) — 2 timers: Clock and Time

36.2 Time

Time is a 64-bit value that contains the time in milliseconds that the circuit providing Time has been
powered.

NOTE Depending on the frequency of the TPM oscillator and the setting of the frequency divisor

(TPM2_ClockRateAdjust()), the rate at which Time advances may be in error by as much as 32.5%.

Time is unaffected by TPM2_ClockSet().

e Time advances monotonically
e Time cannot be influenced by the attacker

(£32.5% freq.) T1 No r‘.)”baCk
e Use is atomic within the TPM T Consistent frequency
> T, T3 Known delay
T4 Interrupt prevention

Source: Trusted Platform Module Library Part 1: Architecture. Level 00 Revision 01.59. Section 36. 15

Intel TDX

18.17.3 Time-Stamp Counter Adjustment

Software can modify the value of the time-stamp counter (TSC) of a logical processor by using the WRMSR instruc-
tion to write to the IA32_TIME_STAMP_COUNTER MSR (address 10H). Because such a write applies only to that
logical processor, software seeking to synchronize the TSC values of multiple logical processors must perform these
writes on each logical processor. It may be difficult for software to do this in a way that ensures that all logical
processors will have the same value for the TSC at a given point in time.

The synchronization of TSC adjustment can be simplified by using the 64-bit IA32_TSC_ADJUST MSR (address

3BH). Like the IA32_TIME_STAMP_COUNTER MSR, the IA32_TSC_ADJUST MSR is maintained separately for each

logical processor. A logical processor maintains and uses the IA32_TSC_ADJUST MSR as follows:

* On RESET, the value of the IA32_TSC_ADJUST MSR is 0.

¢ If an execution of WRMSR to the IA32_TIME_STAMP_COUNTER MSR adds (or subtracts) value X from the TSC,
the logical processor also adds (or subtracts) value X from the IA32_TSC_ADJUST MSR.

* If an execution of WRMSR to the IA32_TSC_ADJUST MSR adds (or subtracts) value X from that MSR, the logical
processor also adds (or subtracts) value X from the TSC.

Unlike the TSC, the value of the IA32_TSC_ADIJUST MSR changes only in response to WRMSR (either to the MSR

itself, or to the IA32_TIME_STAMP_COUNTER MSR). Its value does not otherwise change as time elapses. Software

seeking to adjust the TSC can do so by using WRMSR to write the same value to the IA32_TSC_ADJUST MSR on

each logical processor.

Source: Intel(® 64 and IA-32 Architectures Software Developer's Manual. Volume 3. Version 325462-079US March 2023.
16

Intel TDX

// We read TSC below. Compare IA32 TSC ADJUST to the value sampled on TDHSYSINIT
// to make sure the host VMM doesn't play any trick on us.
IF RARE (ia32 rdmsr(IA32 TSC ADJ MSR ADDR) != global data ptr->plt common config.ia32 tsc adjust)
{
return_val = api_error_with operand id(TDX_ INCONSISTENT MSR, IA32_ TSC_ADJ MSR _ADDR) ;
TDX_ERROR("Inconsistent IA32 TSC ADJUST MSR!\n");
goto EXIT FAILURE;

src/td_transitions/tdh_vp_enter.c lines 314-321.

e Clock advances monotonically with fixed frequency

e Guest has direct access, but can be interrupted
T No rollback
> T;

T, Consistent frequency
T3 Known delay

Source: Intel® Trust Domain Extension (Intel® TDX) Module. Version 1.0.01.01. T4 Interru pt preventlon

16

AMD SEV

15.36.18 Secure TSC

SNP-active guests may choose to enable the Secure TSC feature through SEV_FEATURES bit 9
(SecureTscEn). When enabled, Secure TSC changes the guest view of the Time Stamp Counter when

read by the guest via either the TSC MSR, RDTSC, or RDTSCP instructions. The TSC value is first
scaled with the GUEST TSC_ SCALE value from the VMSA and then is added to the VMSA
GUEST _TSC_OFFSET value. The PO frequency, TSC_RATIO (C001_0104h) and TSC_OFFSET
(VMCB oftset 50h) values are not used in the calculation.

e Secure offset and scale parameters
? Unclear whether TSC manipulations can be detected

>7,?

T No rollback
T, Consistent frequency
T3 Known delay

T4 Interrupt prevention

Source: AMD64 Architecture Programmer’s Manual Volume 2: System Programming. Version 3.40.

17

ARM Trustzone

2022 IEEE Symposium on Security and Privacy (SP)

RT-TEE: Real-time System Availability for
Cyber-physical Systems using ARM TrustZone

Jinwen Wang, Ao Li, Haoran Li, Chenyang Lu, Ning Zhang
Washington University in St. Louis, MO, USA

18

ARM Trustzone

To bridge this gap, we present RT-TEE, a real-time trusted
execution environment. There are three key research challenges.
First, RT-TEE bootstraps the ability to ensure availability using
a minimal set of hardware primitives on commodity embed-
ded platforms. Second, to balance real-time performance and
scheduler complexity, we designed a policy-based event-driven
hierarchical scheduler. Third, to mitigate the risks of having
device drivers in the secure environment, we designed an I/O
reference monitor that leverages software sandboxing and driver
debloating to provide fine-grained access control on peripherals
while minimizing the trusted computing base (TCB).

e Secure world can control scheduling and 1/0 T1 No rollback
>T, T, Consistent frequency

T3 Known delay

18

ARM CCA

Realm Security state Non-secure Security state Secure Security state
VM VM
ELO App App App App TA TA
Realm Realm

EL1 Secure
OS kernel OS kernel TOS partition

EL2 RMM Hypervisor SPM

EL3 Monitor

Root Security state

Source: Realm Management Monitor specification. Version 1.0-eacl.

19

ARM CCA

A6.2 Realm timers

This section describes the progﬁumming model for Realm ELI timers.

Architectural timers are available to a Realm and behave according to their architectural specification.
Rywxty During Realm execution, if a Realm EL1 timer asserts its output, a Realm exit occurs.

Tys If the Host has programmed an EL1 timer to assert its output during Realm execution, that timer output is not
guaranteed to assert.

RrKkCHX If the Host has programmed an EL2 timer to assert its output during Realm execution, that timer output is
guaranteed to assert.

Rryzrp Both the virtual and physical counter values are guaranteed to be monotonically increasing when read by a Realm,
in accordance with the architectural counter behavior.

When read by a Realm, either the virtual or physical counter returns the same value at a given point in time on a
given PE.

In order to ensure that the Realm has a consistent view of time, the virtual timer offset must be fixed for the lifetime
of the Realm. The absolute value of the virtual timer offset is not important, so the value zero has been chosen for
simplicity of both the specification and the implementation.

Source: Realm Management Monitor specification. Version 1.0-eacl. 19

ARM CCA

and register save / restore sequences to manage Realms. At the same time, the RMM is much
simpler than a typical hypervisor because it does not do any of the following:

e Dynamic resource allocation

e Make scheduling decisions

e Manage interrupts

e Provide complex device emulation

Instead, the RMM relies on the Non-secure hypervisor (the Host) to provide this functionality, and

its own activities are limited to only those required to protect the confidentiality and integrity of
Realms. As a result, its implementation can be much smaller than a typical bare-metal hypervisor.

T No rollback

T, Consistent frequency

e Clock cannot be influenced by attacker

e Untrusted hypervisor controls scheduling and interrupts
> T, T3 Known delay

T4 Interrupt prevention

Source: Arm Confidential Compute Architecture Software Stack Guide. Version r1p0. 19

Intel SGX TPM Intel TDX AMD SEV ARM TrustZone ARM CCA

T,-T, Ti-T, Ts T, (?) T T

T No rollback
T, Consistent frequency

T3 Known delay

T4 Interrupt prevention

20

About time for Q&A!
Time does not exist in enclaves a

[
e Not all tasks need the best time r
e Different TEEs provide different levels of o

?2?

enclave time

Intel TDX and ARM CCA will perform
surprisingly well (both T time) T1 No rollback

T, Consistent frequency

T3 Known delay

T4 Interrupt prevention

21

	What time level do use cases require?
	Intel SGX
	Other Trusted Hardware Platforms / TEEs

