
Trustworthy & Accountable

Function-as-a-Service
Fritz Alder, N. Asokan, Arseny Kurnikov, Andrew Paverd, Michael Steiner

Function-as-a-Service (FaaS)

Recent instantiation of “serverless computing”

• Customer specifies the function

• Service provider manages runtime, scaling, load-balancing etc.

Differences to Infrastructure-as-a-Service (IaaS)

• Relatively short-running function invocations

• Stateless functions (storage provided by separate service)

Motivation

FaaS is available from established cloud providers

Usual security concerns of cloud computing still apply:

• Confidentiality of data

• Integrity of computation

3

Motivation

4
https://www.theregister.co.uk/2018/07/24/apache_ibm_cloud_vulnerable/

https://www.theregister.co.uk/2018/07/24/apache_ibm_cloud_vulnerable/

Motivation

FaaS is available from established cloud providers

Usual security concerns of cloud computing still apply:

• Confidentiality of data

• Integrity of computation

More accurate resource usage measurements required:

• Sub-second compute time measurements

Currently achieved via existing reputational trust, but can we do better?

5

Motivation

FaaS can also be provided by non-traditional service providers

• Data centres with spare capacity

• Individuals with powerful PCs (e.g. gamers)

Open source frameworks available

Multiple start-ups in this space

6
https://golem.network/ https://ankr.network

https://openwhisk.apache.org/

https://golem.network/
https://ankr.network/
https://openwhisk.apache.org/

Motivation

FaaS can also be provided by non-traditional service providers

• Data centres with spare capacity

• Individuals with powerful PCs (e.g. gamers)

Heightened security concerns:

• Service provider identity/location may be unknown

• Service provider may not have security expertise

Very few disincentives for cheating:

• Malicious service provider might inflate resource usage measurements

No reputational trust has been established

7

System Model &
Requirements

System model

9

Service ProviderFunction Provider

Clients
Clients
Clients

2. Inputs

3. Outputs

Functions
Functions

Functions

1. Provision function

4. Resource

measurements

Adversary model

Two types of adversaries:

Service provider

• Learn inputs and outputs of function invocations

• Modify inputs and outputs, or execute the function incorrectly

• Overcharge the function provider

- Falsely inflate resource usage measurements

- Create fake function invocations

Function provider

• Under-pay the service provider for resources used by the function

10

Requirements

R1 - Security

• Service provider cannot modify inputs or outputs of a function invocation

• Client assured that output is result of correct execution of intended function on supplied inputs

R2 - Privacy

• Service provider cannot learn inputs or outputs of a function invocation

R3 - Measurement accuracy

• Resource measurements must have sufficient accuracy for FaaS billing

R4 - Measurement veracity

• All parties must be able to verify authenticity of resource measurements

11

Service Provider

Preliminary design

Execute each function in an SGX enclave

Use remote attestation to establish

secure communication channels

Measure resource consumption from

within the enclave

12

SGX Enclave

Function

MeasurementsRemote attestation

Design Challenges

Service Provider

Challenge: Sandboxing untrusted functions

Malicious function provider could attempt

to reduce in-enclave measurements

• No protection from code in the same enclave
SGX Enclave

Function

Measurements

14

Service Provider

Challenge: Attesting worker enclaves

Default SGX remote attestation involves

multiple message round-trips

• Overhead and latency for short-running

functions is too high

• Must be repeated for each enclave

SGX Enclave

Function

Measurements

15

Remote attestation

Service Provider

Challenge: Encrypting client input

Function invocation is a one-shot

message, including (encrypted) input

• Client must encrypt input before knowing

which enclave will run the function

• Cannot rely on service provider to distribute

keys to worker enclaves

SGX Enclave

Function

Measurements

16

Encrypted input

?

Service Provider

Challenge: Measuring time in enclaves

SGX enclave cannot reliably measure its own

running time

• RDTSC value can be manipulated by VMM

• sgx_get_trusted_time() can be arbitrarily delayed

• Enclaves can be transparently interrupted (AEX) and

resumed (ERESUME)

SGX Enclave

Function

Measurements

17

CPU instructions

RDTSC: read timestamp counter

AEX: asynchronous enclave exit

ERESUME: resume enclave

Challenge: Measuring time in enclaves

VERICOUNT:

call sgx_get_trusted_time() at ecall start & end ecall_to_measure()
{

t1 = sgx_get_trusted_time();
.

[function code]
.
.
.
.

t2 = sgx_get_trusted_time();
time = t2 – t1;

}

18

ERESUME

AEX
Arbitrary

delay

ocall
Arbitrary

delay

Tople et al., “VeriCount: Verifiable Resource Accounting Using Hardware and Software Isolation”, ACNS 2018

https://doi.org/10.1007/978-3-319-93387-0_34

S-FaaS Architecture

Architecture overview

Worker enclave runs function within

a sandbox

• e.g. Ryoan

• sandboxing interpreters: e.g. for

JavaScript

20

Service Provider

Worker Enclave

Sandbox

Function

Resource

measurement

mechanisms
Challenges

C1: Sandboxing

C2: Attesting enclaves

C3: Encrypting input

C4: Measuring time

Hunt et al., “Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data”, OSDI 2016

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/hunt

Key Distribution

Enclave (KDE)

ka+ ko+ kr+

ka- ko- kr-

Architecture overview

21

Service Provider

Worker Enclave

Sandbox

Function

Resource

measurement

mechanisms

Function Provider

Client

ka+ ko+ kr+

ka- ko- kr-

Function provisioning

kc+, {inputs, h(f), want_receipt, nonce}kac

{outputs, nonce, [receipt(I,f,O)]ko-}kac

[measurements, tag]kr-

Attestation

kc-

kc+

ka: enclave’s DH key ko: output key

kc: client’s DH key kr: resource reporting key

Transitive attestation

Clients and function providers attest worker enclaves indirectly

22

Key Distribution

Enclave (KDE)

Worker Enclave

Client / Function

provider

attests

attests

distributes public keys

distributes private keys

Transitive attestation

with key agreement

Challenges

C1: Sandboxing

C2: Attesting enclaves

C3: Encrypting input

C4: Measuring time

Measuring Resource
Usage in SGX

Motivation

FaaS is available from established cloud providers

24

Service Invocations Time (GHz-s) Memory (GB-s) Network (GB)

AWS Lambda X O X

Azure Functions X O X

Google Cloud Functions X X X X

IBM Cloud functions X O X

FaaS billing policies of established cloud providers (X = explicit; O = implicit)

https://aws.amazon.com/lambda/pricing/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions/
https://console.bluemix.net/openwhisk/

Types of measurements

25

Symbol Description Units

t Total compute time of the function multiples of Ƭ

Ƭ Duration of each tick in CPU cycles GHz-s

mint Time-integral of memory usage GB-s

mmax Maximum memory used by the function GB

net Total number of network bytes sent and received GB

Measuring compute time

High level idea: two concurrent threads in the enclave (timer & worker)

26

Worker Enclave

worker ecall

ecall return

Timer thread

running a

calibrated

timing loop

Worker thread

running the

sandboxed

function

timer worker

Measuring compute time

High level idea: two concurrent threads in the enclave (timer & worker)

27

Worker Enclave

worker ecall

ecall return

Timer thread

running a

calibrated

timing loop

Worker thread

running the

sandboxed

function

How to detect interrupts?

How to resume

from interrupts?

timer workerHow to ensure worker

thread has started?

SSA stack

Regs

RIP

Intel SGX internals

28

Enclave

ecall

CPU Registers

RAX

RBX

… …

RSP

RIP

TCS

Stage Free

CSSA AEX

ERESUME

TCS

Stage Busy

CSSA

0xff…

0xff…

Enclave data structures

TCS: Thread Control Structure

(C)SSA: (Current) Save State Area

CPU Registers

RIP: Instruction Pointer

RSP: Stack Pointer

Intel Transactional Synchronization Extensions (TSX)

Special instructions enabling Hardware Lock Elision (HLE)

Read set

• Memory addresses read by the transaction (added upon access)

• Transaction will abort if address is concurrently written

Write set

• Memory addresses written by the transaction

• Transaction will abort if address is concurrently read

Roll-back

• All operations since the beginning of the transaction are reverted

29

Starting a function

30

timer ecall

Worker Enclave

worker ecall

1. Acquire mutex

2. Wait on worker

4. Notify timer, processing := true

3. Set SSA marker

5. Start TSX txn 5. Run function

SSA stack

Marker 0x12…

timer worker

Timer thread algorithm

while(processing == true) {

XBEGIN // begin TSX txn

if(worker.ssa == marker) // add worker.ssa to txn read set

{

for(i=0; i<LOOP_COUNT; i++) // LOOP_COUNT depends on Ƭ

nop;

t_internal++;

}

XEND // end TSX txn

t_external = t_internal // update external counter

}

31

Worker thread interrupted

32

timer

Worker Enclave

1. CPU save registers in SSA

2. Abort TSX txn

worker

AEX

3. Modify saved RIP

to custom handler

SSA stack

Regs

RIP

0x00…

0x89…

Worker thread resumed

33

timer

Worker Enclave

1. CPU save registers in SSA

worker

AEX

ERESUME

4. Custom ERESUME handler

restores SSA marker5. Start TSX txn

SSA stack

Marker 0x12..

2. Abort TSX txn

3. Modify saved RIP

to custom handler

Custom ERESUME handler

.text

.globl custom_eresume_handler

.type custom_eresume_handler,@function

custom_eresume_handler:

push %rax # Save registers

push %rbx

lea g_worker_ssa_gpr(%rip),%rax # Load pointer

mov (%rax),%rbx # Dereference pointer

movl $12345,(%rbx) # Write SSA marker value

pop %rbx # Restore registers

pop %rax

jmp *g_original_ssa_rip(%rip) # Resume execution

34

Completing a function

35

Worker Enclave

ecall return

timer

1. Function completes

worker

2. processing := false
3. Stop timing

4. Read time

5. Return outputs and

resource measurements

Measuring Memory and Networking

Memory

• Instrumented allocators used by interpreter

• Measurements updated on every allocation/free

Network

• Payloads measured inside enclave

36

mint Time-integral of memory usage

mmax Maximum memory used by the function

Integration with
OpenWhisk

Integration with OpenWhisk

38

Docker containers

https://openwhisk.apache.org/documentation.html

S-FaaS Docker

containers

Proof-of-concept using Duktape JavaScript

interpreter in worker enclave

S-FaaS Enclave Service

Worker

enclaves

Key

distribution

enclave(s)

https://openwhisk.apache.org/documentation.html

Evaluation

Evaluation: Accuracy

Synthetic function with well-defined compute and memory requirements

• fibonacci(k) calculates the first k numbers in the Fibonacci sequence

Compute time

• Expected to be linear in k

• Can be compared with measurement outside the enclave

Memory time-integral

• Expected to be quadratic in k (k-element list pre-allocated at start of function)

• Harder to measure outside enclave

40

Evaluation: Accuracy

41

Evaluation: Accuracy

42

Evaluation: Performance

Pre-function latency

• Measure cold-start and warm-start latency

• Tested using an empty function to isolate pre-function latency

• Baseline: equivalent operation (same interpreter) without SGX

Resource measurement overhead

• Measure overhead of S-FaaS resource measurement mechanisms

• Octane JavaScript benchmarks (excluding graphical tests)

• Baseline: equivalent operation without resource measurement

Benchmark environment

• Core i5-6500, 8GB RAM, Ubuntu 16.04, Intel SGX SDK 2.2.1

43

https://chromium.github.io/octane/

Evaluation: Pre-function latency

Cold-start

1. Create Docker container

2. Create enclave

3. Provision function

4. Perform key-agreement

5. Return empty response

Baseline: 3179 ms (σ = 40 ms)

S-FaaS: 3249 ms (σ = 38 ms)

Latency increase: ~2%

Warm-start

1. Create Docker container

2. Create enclave

3. Provision function

4. Perform key-agreement

5. Return empty response

Baseline: 204 ms (σ = 106 ms)

S-FaaS: 210 ms (σ = 149 ms)

Latency increase: ~3%

44

Evaluation: Resource measurement overhead

45

Function Baseline S-FaaS

No encryption Encryption
Encryption &

receipt

Box2D 3.019 3.118 3.3% 3.121 3.4% 3.135 3.8%

DeltaBlue 1.446 1.524 5.4% 1.529 5.7% 1.537 6.3%

NavierStokes 4.155 4.418 6.3% 4.447 7.0% 4.473 7.7%

RayTrace 0.779 0.848 8.9% 0.850 9.1% 0.852 9.4%

Richards 1.719 1.767 2.8% 1.767 2.8% 1.799 4.7%

Overall - 5.3% 5.6% 6.3%

Trade-offs and limitations

Need for an additional thread

• State-of-the-art SGX side-channel defences(*) require control of both sibling hyperthreads

Timing granularity

• Choice of Ƭ affects extent of under- or over-reporting

• S-FaaS service providers can specify Ƭ for each function

Architecture-specific calibration

• Timing loop must be calibrated for different CPU architectures

46

(*) SGX side-channel defenses:

Cloak: Gruss et al., “Strong and Efficient Cache Side-Channel Protection using Hardware Transactional Memory”, Usenix SEC 2017

HyperRace: Chen et al., “Racing in Hyperspace: Closing Hyper-Threading Side Channels on SGX with Contrived Data Races”, IEEE S&P 2018

Varys: Oleksenko et al., “Varys: Protecting SGX enclaves from practical side-channel attacks”, Usenix ATC 2018

https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-gruss.pdf
https://doi.org/10.1109/SP.2018.00024
https://www.usenix.org/system/files/conference/atc18/atc18-oleksenko.pdf

Suggested SGX enhancements

Secure tick counter

• Provide a trustworthy tick counter that can be accessed without leaving the enclave

Custom ERESUME handlers

• Allow enclaves to specify an in-enclave handler to be called on each ERESUME

• Could also be used to detect frequent AEX events indicative of side-channel attacks

47

Integration with distributed systems

Smart contracts to pay for outsourced computation

• S-FaaS function receipts and resource measurements can be verified in smart contracts

• Straight-forward integration with payment networks

- Particularly beneficial to non-traditional service providers

Leader election based on useful work

• Similar to Resource-Efficient Mining for Blockchains (Zhang et al.)

• Uses “useful computation” to determine who mines next block

48

Zhang et al., “REM: Resource-Efficient Mining for Blockchains”, Usenix SEC 2017

https://eprint.iacr.org/2017/179.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/zhang

Deployment considerations

Incremental deployment

• Initially, S-FaaS requires no changes on client-side (no client attestation or encryption)

• Clients can individually start to verify attestation and/or encrypt inputs

Implementations with other TEEs

• S-FaaS could be ported to e.g. ARM TrustZone

• TrustZone secure world still requires functions to run in a suitable sandbox, but timing would be

simpler because secure world cannot be arbitrarily paused

49

Conclusions

FaaS increasingly popular with cloud providers and non-traditional service providers

• Requires strong security: data confidentiality and integrity of computation

• Requires accurate and trustworthy resource consumption measurement

S-FaaS demonstrates how to secure current FaaS architectures using SGX

• Transitive attestation

• In-enclave resource measurement mechanisms

Possibilities for future work

• Integration with distributed systems

• Measuring resource usage in other SGX applications

50

51

What if SGX is broken?

Back to current state of FaaS security and resource measurement

• TEEs useful in two kinds of settings:

1. improving security

2. improving other attributes while preserving security

S-FaaS is Type 1. TEE compromise is a bigger concern in Type 2

• Application-specific ways of detecting / mitigating effects of TEE compromise, e.g.,

• post-mortem auditing of signed receipts

• statistical mechanisms like in PoET and Zhang et. al.

52

Trade-offs and limitations

Need for an additional thread

• Sibling hyperthreads disabled by some cloud providers due to shared L1 cache

• State-of-the-art SGX defenses (e.g. Cloak, HyperRace, and Varys) require control of both

sibling hyperthreads to prevent cache-line side-channel attacks

Timing granularity

• Smaller values of Ƭ reduce time “sacrificed” by interrupts, but increase number of transactions

• Transaction setup times are not counted, so frequent transactions lead to under-reporting

• In S-FaaS, service providers can choose values of Ƭ for each function

Architecture-specific calibration

• Timing loop must be calibrated for different CPU architectures

53

https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-gruss.pdf
http://doi.ieeecomputersociety.org/10.1109/SP.2018.00024
https://www.usenix.org/system/files/conference/atc18/atc18-oleksenko.pdf

