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Application

Intel SGX – a Trusted Execution Environment (TEE)

Enclave (trusted code) – protected from OS and app

• Isolated execution

• Data confidentiality and integrity (memory encryption)

• Encryption keys derived from CPU

• Attestation – proves what code is executed 

• Using group signatures

From the enclave‘s perspective, everything else is untrusted.

➢ Hypervisor, operating system, applications

2

ECALL

OCALL

Secure attested

channel
Sealed storage

Enclave 2

Enclave 1



Motivation

Intel SGX provides features that can be useful in a cloud computing setting

This requires integration of SGX into the existing cloud ecosystem

But: Bindings to physical machine clashes with cloud computing practices

➢ Cloud migration requires independence from physical machines

Persistent data to be migrated:

• Sealed data (Sealing key)

• Monotonic counter values

• Session keys
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Hypervisor Hypervisor

VM migration with Intel SGX
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[1] Gu, Z. Hua, Y. Xia, H. Chen, B. Zang, H. Guan, and J. Li, “Secure live migration of SGX enclaves on 

untrusted cloud”, DSN 2017

VMVM



Fork attack
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Untrusted OS

Requirements and adversary model

Requirements:

1. Maintain all SGX guarantees (Integrity, Confidentiality, Isolation)

2. Only migrate to correct and authorized machines

3. Prevent Fork and Rollback attacks

4. Low performance overhead (runtime and migration)

5. No hardware changes

Adversary Model:

• Same as SGX model: Everything is untrusted

• Adversary can DoS (out of scope)

• Enclave developer is benign (wants to migrate)
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Design

1. Migration Library – part of the user enclave (C++, 940 LOC)

• Sealing

• Migratable sealing key

• Monotonic counters

• Migratable alternatives for SGX counters

2. Migration Enclave – handles migration to destination (C++, 217 LOC)

• Receives data from local user enclave

• Performs remote attestation to other Migration Enclave

• Transfers data

• Restores user enclave at destination
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• Migratable versions of SGX primitives
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➢ belong to the same provider
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SGX monotonic counters

• Hardware supported counters

• Referenced by UUID

• Guaranteed to increase only

• Naive solution to migrate monotonic counters:

1. Reference counters by static ID

2. Map IDs to UUIDs

3. Migrate Ids and Values, increment on destination

• This is very slow! 22 seconds to increment to 100

• Not feasible for large values
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migrate



ID UUID Value Offset

0 fa68e33b-… 1 0

Migrating counters with offsets
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ID UUID Value Offset

0 fa68e33b-… 1 0

Migrating counters with offsets
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• No fork attacks possible (Counters get invalidated)

• No rollback possible (Offset static during lifetime on one machine)
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Evaluation – initialization and sealing
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Evaluation – migratable counters
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Future work

Drawback: Migration is not transparent

• Migration Library needs to be notified to start migration process

➢ Hypervisor could notify the library directly

• Would make migration transparent for application and OS

Possible extension: Migrate data memory

• We focus on persistent state

• Earlier work exists on migrating data memory of an enclave

• Combining these approaches would allow to migrate enclaves without restarting them

Possible extension: Migration policies

• Developers could define policies that are to be enforced by Migration Enclave

➢ ”Only migrate to european data centers”
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Summary

VM migration does not work directly for Intel SGX

• Secrets are bound to physical hosts

Solution: Migration Library and Migration Enclave

• Migration Library: migratable versions of sealing and 

monotonic counter functions

• Migration Enclave: attestation and migration to 

destination

Pros and cons:

• Small trusted computing base (940 and 217 LOC)

• Small overhead for migratable functions

• Fixed overhead of ~0.5 seconds per migration

• But: Migration not transparent
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https://github.com/SGX-

Cloud/migration
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Backup
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Why persistent storage?

• External storage services can store persistent data

• Local devices can poll storage services on demand

• However: 

1. What keys are used to authenticate and communicate with the service?

2. How is freshness of external data guaranteed (Rollback attacks)

➢ Small amount of persistent data is needed locally (some keys, some counters)

➢ Migrating this data across machines might be necessary
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Remote attestation of Migration Enclaves

Remote attestation checks whether the destination target is also a Migration Enclave

• SGX MRENCLAVE value contains hash of source code

• Accept only connections to valid versions of a Migration Enclave (hardcoded)

Attacker could run his own instance of a Migration Enclave

• Standard remote attestation only checks if the destination instance is valid (authentication)

• This would allow attackers to migrate user enclaves to machines they control

Additional authorization check needed

• Maintain a shared secret inside the Migration Enclave

• E.g. certificates provisioned by the cloud provider

• Only accept connections to Migration Enclaves that can present a valid certificate

➢ Requires a secure setup phase (i.e. during installation of the server)
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