
Migrating SGX enclaves 
with persistent state
Fritz Alder, Arseny Kurnikov, Andrew Paverd, N. Asokan



Application

Intel SGX – a Trusted Execution Environment (TEE)

Enclave (trusted code) – protected from OS and app

• Isolated execution

• Data confidentiality and integrity (memory encryption)

• Encryption keys derived from CPU

• Attestation – proves what code is executed 

• Using group signatures

From the enclave‘s perspective, everything else is untrusted.

➢ Hypervisor, operating system, applications

2

ECALL

OCALL

Secure attested

channel
Sealed storage

Enclave 2

Enclave 1



Motivation

Intel SGX provides features that can be useful in a cloud computing setting

This requires integration of SGX into the existing cloud ecosystem

But: Bindings to physical machine clashes with cloud computing practices

➢ Cloud migration requires independence from physical machines

Persistent data to be migrated:

• Sealed data (Sealing key)

• Monotonic counter values

• Session keys

3

Hardware protection

In run-time enclave memory



Hypervisor Hypervisor

VM migration with Intel SGX

4

Hardware

Operating system

Application

Root of Trust Hardware

Operating system

Application

Root of Trust

Enclave Enclave

Copy VM

Gu et al. [1]

[1] Gu, Z. Hua, Y. Xia, H. Chen, B. Zang, H. Guan, and J. Li, “Secure live migration of SGX enclaves on 

untrusted cloud”, DSN 2017

VMVM



Fork attack

5

Source

Enclave

migrate

Rollback attack

Enclave

load data

99

store data

Do not shutdown source enclave after migration

→ Forked execution of enclaves 

(with current state)

restart enclave

load data

Provide old persistent data on restart

Roll back the enclave state

Example: Password guessing limitation

Remaining tries: 100

Remaining tries: 100 Remaining tries: 100

Destination

Enclave

100

100



Untrusted OS

Requirements and adversary model

Requirements:

1. Maintain all SGX guarantees (Integrity, Confidentiality, Isolation)

2. Only migrate to correct and authorized machines

3. Prevent Fork and Rollback attacks

4. Low performance overhead (runtime and migration)

5. No hardware changes

Adversary Model:

• Same as SGX model: Everything is untrusted

• Adversary can DoS (out of scope)

• Enclave developer is benign (wants to migrate)

6

Untrusted application

Enclave



Design

1. Migration Library – part of the user enclave (C++, 940 LOC)

• Sealing

• Migratable sealing key

• Monotonic counters

• Migratable alternatives for SGX counters

2. Migration Enclave – handles migration to destination (C++, 217 LOC)

• Receives data from local user enclave

• Performs remote attestation to other Migration Enclave

• Transfers data

• Restores user enclave at destination

7

Migration Enclave

User Enclave

Migration Library



Physical Machine (source)

User VM

Management VM

Architecture

8

Migration Enclave

User Enclave

• Migratable versions of SGX primitives

• Migration Enclaves authorize themselves to each other

➢ belong to the same provider

Migration Library

Local Attestation

Physical Machine (destination)

User VM

Management VM

Migration Enclave

User Enclave

Migration Library

Local Attestation

Remote Attestation



SGX monotonic counters

• Hardware supported counters

• Referenced by UUID

• Guaranteed to increase only

• Naive solution to migrate monotonic counters:

1. Reference counters by static ID

2. Map IDs to UUIDs

3. Migrate Ids and Values, increment on destination

• This is very slow! 22 seconds to increment to 100

• Not feasible for large values

9

UUID Value

fa68e33b-… 5

864d2906-... 2

ID UUID Value

0 fa68e33b-… 5

1 864d2906-... 2

ID UUID Value

0 e20f15c6b-… 5

1 a0dd231a-... 2

migrate



ID UUID Value Offset

0 fa68e33b-… 1 0

Migrating counters with offsets

10

read
0

increment

read
1

Destination machineSource machine

ID UUID Value Offset

0 fa68e33b-… 0 0



ID UUID Value Offset

0 fa68e33b-… 1 0

Migrating counters with offsets

11

read
0

increment

read
err

invalidated

migrate

ID UUID Value Offset

0 864d2906-… 0 1 read
1

increment

read
2

Destination machineSource machine

• No fork attacks possible (Counters get invalidated)

• No rollback possible (Offset static during lifetime on one machine)

ID UUID Value Offset

0 864d2906-… 1 1

ID UUID Value Offset

0 fa68e33b-… 0 0



Evaluation – initialization and sealing

12

0,00
0,10
0,20
0,30
0,40
0,50
0,60
0,70
0,80
0,90
1,00

Init new Init restore Seal (100kB) Unseal (100kB)

Average duration of initialization and sealing operations

Migration library Baseline

Test setup: Intel i5-6500, 8GB RAM, 500GB HDD ; 1000 runs

Full migration overhead: Fixed at ~0.5 seconds

m
ill

is
e
c
o
n
d
s



Evaluation – migratable counters

13

0,00

50,00

100,00

150,00

200,00

250,00

300,00

Create Increment Read Destroy

Average duration of monotonic counter operations

Migration library Baseline

Test setup: Intel i5-6500, 8GB RAM, 500GB HDD ; 1000 runs

m
ill

is
e
c
o
n
d
s



Future work

Drawback: Migration is not transparent

• Migration Library needs to be notified to start migration process

➢ Hypervisor could notify the library directly

• Would make migration transparent for application and OS

Possible extension: Migrate data memory

• We focus on persistent state

• Earlier work exists on migrating data memory of an enclave

• Combining these approaches would allow to migrate enclaves without restarting them

Possible extension: Migration policies

• Developers could define policies that are to be enforced by Migration Enclave

➢ ”Only migrate to european data centers”
14



Summary

VM migration does not work directly for Intel SGX

• Secrets are bound to physical hosts

Solution: Migration Library and Migration Enclave

• Migration Library: migratable versions of sealing and 

monotonic counter functions

• Migration Enclave: attestation and migration to 

destination

Pros and cons:

• Small trusted computing base (940 and 217 LOC)

• Small overhead for migratable functions

• Fixed overhead of ~0.5 seconds per migration

• But: Migration not transparent

Source

Migration Enclave

Source Enclave

Migration 

Library

Destination

Migration Enclave

Destination Enclave

Migration 

Library

https://github.com/SGX-

Cloud/migration

15



Backup

16



Why persistent storage?

• External storage services can store persistent data

• Local devices can poll storage services on demand

• However: 

1. What keys are used to authenticate and communicate with the service?

2. How is freshness of external data guaranteed (Rollback attacks)

➢ Small amount of persistent data is needed locally (some keys, some counters)

➢ Migrating this data across machines might be necessary

17



Physical machine (destination)

User VMManagement VM

Physical machine (source)

User VM Management VM

Migration 

Enclave
Migration 

Enclave

init(new)

migrate local 

attestation

data

remote 

attestation

data
restore

init(migrate)

DONEDONE

local 

attestation

User Enclave

Migration 

Library

User Enclave

Migration 

Library

18



Remote attestation of Migration Enclaves

Remote attestation checks whether the destination target is also a Migration Enclave

• SGX MRENCLAVE value contains hash of source code

• Accept only connections to valid versions of a Migration Enclave (hardcoded)

Attacker could run his own instance of a Migration Enclave

• Standard remote attestation only checks if the destination instance is valid (authentication)

• This would allow attackers to migrate user enclaves to machines they control

Additional authorization check needed

• Maintain a shared secret inside the Migration Enclave

• E.g. certificates provisioned by the cloud provider

• Only accept connections to Migration Enclaves that can present a valid certificate

➢ Requires a secure setup phase (i.e. during installation of the server)

19


